Hirschegg 2008 January 31th, 2007 Emission Spectra from the Interaction of VUV FEL Radiation with solid Aluminium at FLASH U. Zastrau, L. Cao, I. Uschmann.

Slides:



Advertisements
Similar presentations
Relativistic Surface High Harmonic Generation
Advertisements

On the Differences between SERS and Infrared Reflection Absorption Spectra of CO 2 on Cold-deposited Copper M.Lust, A.Pucci,Universität Heidelberg A.Otto,
Ultrafast laser-driven electric field propagation on metallic surfaces Laser-driven proton beams When an intense short-pulse laser is focused down onto.
Institute of Technical Physics 1 conduction Hyperbolic heat conduction equation (HHCE) Outline 1. Maxwell – Cattaneo versus Fourier 2. Some properties.
SENIGALLIA-COULOMB09 1 Protons Acceleration with Laser: influence of pulse duration M. Carrié and E. Lefebvre CEA, DAM, DIF, Arpajon, France A. Flacco.
Intense Terahertz Generation and Spectroscopy of Warm Dense Plasmas Kiyong Kim University of Maryland, College Park.
Lawrence Livermore National Laboratory Pravesh Patel 10th Intl. Workshop on Fast Ignition of Fusion Targets June 9-13, 2008, Hersonissos, Crete Experimental.
LCLS Atomic Physics with Intense X-rays at LCLS Philip H. Bucksbaum, University of Michigan, Ann Arbor, MI Roger Falcone, University of California, Berkeley,
Light. Photons The photon is the gauge boson of the electromagnetic force. –Massless –Stable –Interacts with charged particles. Photon velocity depends.
Short pulses in optical microscopy Ivan Scheblykin, Chemical Physics, LU Outline: Introduction to traditional optical microscopy based on single photon.
2. High-order harmonic generation in gases Attosecond pulse generation 1. Introduction to nonlinear optics.
Laser Plasma and Laser-Matter Interactions Laboratory The effect of ionization on condensation in ablation plumes M. S.
UNCLASSIFIED Heat Transport Measurements in Foil Targets Irradiated with Picosecond Timescale Laser Pulses D. J. Hoarty 1, S F James 1, C R D Brown 1,
Laser Magnetized Plasma Interactions for the Creation of Solid Density Warm (~200 eV) Matter M.S. R. Presura, Y. Sentoku, A. Kemp, C. Plechaty,
GEOMETRIC EFFECTS ON EUV EMISSIONS IN M. S. Tillack, K. L. University of California San Diego.
Research Opportunities in Radiation-Induced Chemical Dynamics Scientific Opportunities for Studying Laser Excited Dynamics at the LCLS: David Bartels Notre.
K-Shell Spectroscopy of Au Plasma Generated with a Short Pulse Laser Calvin Zulick [1], Franklin Dollar [1], Hui Chen [2], Katerina Falk [3], Andy Hazi.
Diagnostics for Benchmarking Experiments L. Van Woerkom The Ohio State University University of California, San Diego Center for Energy Research 3rd MEETING.
Update on LLNL FI activities on the Titan Laser A.J.Mackinnon Feb 28, 2007 Fusion Science Center Meeting Chicago.
KeV Harmonics from Solid Targets - The Relatvisitic Limit and Attosecond pulses Matt Zepf Queens University Belfast B.Dromey et al. Queen’s University.
Photoelectron Spectroscopy Lecture 7 – instrumental details –Photon sources –Experimental resolution and sensitivity –Electron kinetic energy and resolution.
Random phase noise effect on the contrast of an ultra-high intensity laser Y.Mashiba 1, 2, H.Sasao 3, H.Kiriyama 1, M.R.Asakawa 2, K.Kondo 1, and P. R.
RF background, analysis of MTA data & implications for MICE Rikard Sandström, Geneva University MICE Collaboration Meeting – Analysis session, October.
1 M. Aslam Baig National Center for Physics Quaid-i-Azam University Campus, Islamabad Pakistan
Bremsstrahlung Temperature Scaling in Ultra-Intense Laser- Plasma Interactions C. Zulick, B. Hou, J. Nees, A. Maksimchuk, A. Thomas, K. Krushelnick Center.
ENHANCED LASER-DRIVEN PROTON ACCELERATION IN MASS-LIMITED TARGETS
Great feeling Walking Ifen without machines Sunday Jan 26, 2007.
J.Vaitkus et al., WOEDAN Workshop, Vilnius, The steady and transient photoconductivity, and related phenomena in the neutron irradiated Si.
COST Meeting Krakow May 2010 Temperature and K  -Yield radial distributions of laser-produced solid-density plasmas Ulf Zastrau X-ray Optics Group - IOQ.
1 P1X: Optics, Waves and Lasers Lectures, Lasers and their Applications i) to understand what is meant by coherent and incoherent light sources;
Attenuation by absorption and scattering
Tzveta Apostolova Institute for Nuclear Research and Nuclear Energy,
INTRODUCTION Characteristics of Thermal Radiation Thermal Radiation Spectrum Two Points of View Two Distinctive Modes of Radiation Physical Mechanism of.
Investigate Laser induced desorption (LID) of hydrogen retained in co-deposited layers on JT-60 open-divertor tile 20 ps-pulsed Nd:YAG laser for wide laser-intensity.
N. Yugami, Utsunomiya University, Japan Generation of Short Electromagnetic Wave via Laser Plasma Interaction Experiments US-Japan Workshop on Heavy Ion.
Ultrafast Carrier Dynamics in Graphene M. Breusing, N. Severin, S. Eilers, J. Rabe and T. Elsässer Conclusion information about carrier distribution with10fs.
Plasma diagnostics using spectroscopic techniques
This work was performed under the auspices of the U.S. Department of Energy by the University of California Lawrence Livermore National Laboratory under.
Observation of ultrafast response by optical Kerr effect in high-quality CuCl thin films Asida Lab. Takayuki Umakoshi.
Ultrafast carrier dynamics Optical Pump - THz Probe Ultrafast carrier dynamics in Br + -bombarded semiconductors investigated by Optical Pump - THz Probe.
Institute of Atomic and Molecular Sciences, Academia Sinica, Taiwan National Taiwan University, Taiwan National Central University, Taiwan National Chung.
J. Hasegawa, S. Hirai, H. Kita, Y. Oguri, M. Ogawa RLNR, TIT
R. Kupfer, B. Barmashenko and I. Bar
Fast Electron Temperature Scaling and Conversion Efficiency Measurements using a Bremsstrahlung Spectrometer Brad Westover US-Japan Workshop San Diego,
Transition from periodic lattice to solid plasma in ultrashort pulse irradiation of metals Dimitri Fisher Soreq NRC Israel 25 th Hirschegg PHEDM Workshop.
R. Doerner, ITPA SOL/DIV meeting, Avila, Jan. 7-10, Be deposition on ITER first mirrors: layer morphology and influence on mirror reflectivity G.
Enhancing the Macroscopic Yield of Narrow-Band High-Order Harmonic Generation by Fano Resonances Muhammed Sayrac Phys-689 Texas A&M University 4/30/2015.
Chapter 5 Interactions of Ionizing Radiation. Ionization The process by which a neutral atom acquires a positive or a negative charge Directly ionizing.
John T. Costello National Centre for Plasma Science & Technology (NCPST)/ School of Physical Sciences, Dublin City University (Very)
-Plasma can be produced when a laser ionizes gas molecules in a medium -Normally, ordinary gases are transparent to electromagnetic radiation. Why then.
Optimization of plasma uniformity in laser-irradiated underdense targets M. S. Tillack, K. L. Sequoia, B. O’Shay University of California, San Diego 9500.
Laser drilling of a Copper Mesh
Laboratory photo-ionized plasma David Yanuka. Introduction  Photo-ionized plasmas are common in astrophysical environments  Typically near strong sources.
Measurements of High-Field THz Induced Photocurrents in Semiconductors Michael Wiczer University of Illinois – Urbana-Champaign Mentor: Prof. Aaron Lindenberg.
Mirela Cerchez, ILPP, HHU, Düsseldorf Meeting GRK1203, Bad Breisig, 11th October 2007 Absorption of sub-10 fs laser pulses in overdense solid targets Mirela.
KeV Harmonics from Solid Targets - The Relatvisitic Limit and Attosecond pulses Matt Zepf Queens University Belfast B.Dromey et al. Queen’s University.
Munib Amin Institute for Laser and Plasma Physics Heinrich Heine University Düsseldorf Laser ion acceleration and applications A bouquet of flowers.
Time-Resolved X-ray Absorption Spectroscopy of Warm Dense Matter J.W. Lee 1,2,6, L.J. Bae 1,2, K. Engelhorn 3, B. Barbel 3, P. Heimann 4, Y. Ping 5, A.
Wide-range Multiphase Equations of State and Radiative Opacity of Substances at High Energy Densities Konstantin V. Khishchenko, Nikolay Yu. Orlov Joint.
HHG and attosecond pulses in the relativistic regime Talk by T. Baeva University of Düsseldorf, Germany Based on the work by T. Baeva, S. Gordienko, A.
EXAFS-spectroscopy method in the condensed matter physics: First results on energy-dispersive EXAFS station in RSC “Kurchatov Institute” Vadim Efimov Joint.
GRK1203 workshop, Oelde, Febr 2008 GRK1203 workshop on laser plasma physics and magnetic plasma confinement Laser.
Physics of Hot, Dense Plasmas
Preliminary study for Soft X-ray Spectroscopy in VEST
Experiments at LCLS wavelength: 0.62 nm (2 keV)
ECEN 2010 April 28,2014 Frank Barnes.
X-Ray Spectrometry Using Cauchois Geometry For Temperature Diagnostics
Chapter 5 - Interactions of Ionizing Radiation
SRF Cavity Etching Using an RF Ar/Cl2 Plasma
EX18710 (大阪大学推薦課題) 課題代表者  矢野 将寛 (大阪大学大学院 工学研究科) 研究課題名
Presentation transcript:

Hirschegg 2008 January 31th, 2007 Emission Spectra from the Interaction of VUV FEL Radiation with solid Aluminium at FLASH U. Zastrau, L. Cao, I. Uschmann & E. Förster IOQ - X-Ray Optics Group - Friedrich-Schiller-University Jena C. Fortmann, G. Röpke – University Rostock R. Fäustlin – DESY Hamburg

Hirschegg 2008Ulf Zastrau1 VI people in theory & experiment L. Cao, U. Zastrau, I. Uschmann, E. Förster a.Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, Jena, Germany C. Fortmann, G. Röpke, J. Tiggesbäumker, A. Przystawik, K.-H. Meiwes-Broer, H. Reinholz, R. Thiele, Th. Bornath, N.X. Truong, A. Höll, R. Redmer b.Institut für Physik, Universität Rostock, Universitätsplatz 3, Rostock,Germany R. Fäustlin, T. Laarmann, S. Toleikis, S. Düsterer, P. Radcliffe, T. Tschentscher c.Deutsches Elektron-Synchrotron DESY, Notkestr. 85, Hamburg, Germany S.H. Glenzer, T. Döppner d.L-399, Lawrence Livermore National Laboratory, University of California, P.O. Box 808, Livermore, CA 94551, USA

Hirschegg 2008Ulf Zastrau2 Contents Warm Dense Matter – Creation in isolation state? Experimental Setup – FEL irradiates Aluminum target Experimental Results – VUV emission spectra Analysis – Bremsstrahlung, Line Intensities and L-edge Simulation – Hydrodynamic Predictions from HELIOS Summary of the Talk

Hirschegg 2008Ulf Zastrau3 Warm Dense Matter Condensed Matter <> Warm Dense Matter <> Ideal Plasma E thermal ~ E Fermi eV Plasma Coupling (E coulomb / E thermal )  >1  = x  solid Condensed Matter theory fails: Electrons are too hot Classical Plasma theory fails: collective behavior of electrons and atoms

Hirschegg 2008Ulf Zastrau4 To create WDM, one needs… PROBLEMS with “long” laser pulses, hydrodynamic motion takes place while laser is heating  need of fs laser pulses, most common VIS or IR lasers optical density is high at VIS: multi-photon absorption - high reflectivity of surface hot electrons (~I ²) steep gradient at surface - high ion charge (~10+) U. Teubner et al., Appl. Phys. Lett. 59, 2672 (1991). SOLUTIONS layer target: laser generated electrons heat WDM indirectly Benattar, Geindre et al, Opt. Comm. (1992) XUV FEL : linear absorption - short pulses with high intensity ‘warm’ electrons Homogeneous temperature distribution - low ion charge (~3+) electron temperature T e of a few tens eV high density (  ~ solid density) JETI, IOQ Jena

Hirschegg 2008Ulf Zastrau5 K 1s² L [He] 2s²2p 6 M [Ne] 3s²2p 1 The target - Aluminum 93 eV Z*=2.6 Energy Conduction band Absorption coefficient above L-egde (72 eV): µ (L) / µ (M) ~

Hirschegg 2008Ulf Zastrau6 Experimental Setup Al bulk 45° FEL pulses 30 fs 13.5 nm / 93 eV 30µm focal spot 50µJ/pulse  VUV Spectrometer covers 7..19nm with /  ~ ×10 14 Wcm -2 n crit = 6  cm -3 ~ 60 n solid  direct energy transfer into the bulk Absorption length ~ 40nm [Henke] Accumulation of exposures ≥10 -6 efficiency

Hirschegg 2008Ulf Zastrau7 Results – EUV emission spectrum Characteristics: -FEL Scatter at 13.5nm (bandwidth ~ 1.4nm) -continuum emission (bremsstrahlung) -spectral line emission (ratio -> temperature) -Al L absorption edge (penetration depth) (in 4  )

Hirschegg 2008Ulf Zastrau8 Analysis I - bremsstrahlung provided by C. Fortmann et al. Simulation of continuum radiation: Kramer’s law, with Z : mean ion charge Assumption of reabsorption by Gaunt factor g T ( ) in Sommerfeld approximation best fit of bremsstrahlung  T e = 22.5 eV

Hirschegg 2008Ulf Zastrau9 Analysis II – emission lines Ratio of lines given by Boltzmann ratio of dubletts of Al IV  T e = 22.6 eV provided by C. Fortmann et al. COMPTRA04

Hirschegg 2008Ulf Zastrau10 Comparison XUV – UV Laser FLASH Experiment 13.5nm, 30fs 1.5  W/cm² 25µm focus Recorded with a focusing spectrometer and CCD  no high ionization (>4+) detectable Al 6+ Lines FEL UV Laser Experiment 248nm, 500fs (with prepulse) 5  W/cm² 22µm focus Recorded with x-ray film on Rowland circle U. Teubner et al., Appl. Phys. Lett. 59, 2672 (1991).

Hirschegg 2008Ulf Zastrau11 Reabsorption of Bremsstrahlung The effect of reabsorption can be determined by the transmission close to the L – edge, by assuming tabulated attenuation coefficients Notice: mean ion charge is Z=3.5 Al L-edge If hot plasma is present one would observe a change of the edge. Absorption through WDM  Possilbe EXAFS WDM diagnostics ? Ultrafast melting Si L-edge EXAFS: Oguri, Okano et al., Appl. Phys. Lett. 87 (2005).

Hirschegg 2008Ulf Zastrau12 Hydrodynamic predictions (preliminary) provided by R. Fäustlin Electron Temperature Mean Ion Charge Depth [µm] Same FEL parameters as in the experiment Includes absorption via bound-free and inverse bremsstrahlung ~200 fs emission duration (Murnane, Kaypeyn et al. Science ‘91) 0 fs 500 fs 1 ps 0 fs 500 fs 1 ps

Hirschegg 2008Ulf Zastrau13 Summary of the talk Thank you for your attention. Warm Dense Matter can be created in isolation (without hot plasma) using FLASH XUV pulses and solid target An electron temperature of T e = (23±7) eV was deduced from bremsstrahlung fit and ratio of Al IV emission lines Al III and Al IV emission lines are detected, but no Al VII and higher although there are present in optical laser plasmas The penetration depth is l =(40±10) nm deduced from L-egde, with agrees with the absorption length of FEL radiation in Al Hydrodynamic simulations are in agreement with T e and ion charge, expected emission time  ~ 200 fs.

Hirschegg 2008Ulf Zastrau14 Anhang

Hirschegg 2008Ulf Zastrau15 Reflection optics Advantages: - better performance - higher aperture (use of the whole blazed surface) Possible problem: - loss of reflectivity by surface contamination - loss of reflectivity by surface roughness induced by debris Reflectivity of Nickel with a 2 nm carbon surface

Hirschegg 2008Ulf Zastrau16 Existing Jena TG spectrometer Name/TypeSize (source- CCD) Solid Angle (E-4sr) 13.5nm AlignmentFragility(photons Out/In) costcomment Jena72 cm4.1~0.1nmMechanically, Timeconsuming Sturdy housing, Fragile grating Readily available Source Photons to CCD: 2.6  Thanks to R. Fäustlin

Hirschegg 2008Ulf Zastrau17 Reabsorption of Bremsstrahlung in solid aluminium target – effect of „hole boring“ Fresh target surface after many FEL pulses target surface target surface FEL pulse constant angle of incidence FEL pulse EUV spectrometer constant observation angle EUV spectrometer deep penetration weak penetration, low intensity Weak emission and reabsorption Strong reabsorption L edge contrast strong plasma near surface only Penetration depth 40nm, focus diameter 20µm  factor of 500