 stem electron density ~ 1×10 11 cm -2  Gate Voltage ( Vg ) 0.0 ~ 0.8V  wire electron density 0 ~ 4×10 5 cm -1  arm electron density 0 ~ 1.3×10 11.

Slides:



Advertisements
Similar presentations
A.V. Koudinov, Yu. G. Kusrayev A.F. Ioffe Physico-Technical Institute St.-Petersburg, Russia L. C. Smith, J. J. Davies, D. Wolverson Department.
Advertisements

Reference Bernhard Stojetz et al. Phys.Rev.Lett. 94, (2005)
1 Mechanism for suppression of free exciton no-phonon emission in ZnO tetrapod nanostructures S. L. Chen 1), S.-K. Lee 1), D. Hongxing 2), Z. Chen 2),
Tomsk Polytechnic University1 A.S. Gogolev A. P. Potylitsyn A.M. Taratin.
Single wire laser ’ #5 C‘ excited by Two Ti:Sapphire lasers Toshiyuki Ihara ① : Motivation / experimental setup / Sample structure / PL and PLE.
Dynamics of Vibrational Excitation in the C 60 - Single Molecule Transistor Aniruddha Chakraborty Department of Inorganic and Physical Chemistry Indian.
Optical and electrical characterization of 4H-SiC detectors R. Schifano, A. Vinattieri INFM - Dipartimento di Fisica, Universita ’di Firenze ( Italy) S.
RAMAN SPECTROSCOPY Scattering mechanisms
K 2 CsSb Cathode Development John Smedley Triveni Rao Andrew Burrill BNL ERL needs – 50 mA, 7 mm dia., 1.3 mA/mm 2.
TRIONS in QWs Trions at low electron density limit 1. Charged exciton-electron complexes (trions) 2. Singlet and triplet trion states 3. Modulation doped.
The electronic structures of 2D atomically uniform thin film S.- J. Tang, T. Miller, and T.-C. Chiang Department of Physics, University of Illinois at.
P461 - Semiconductors1 Semiconductors Filled valence band but small gap (~1 eV) to an empty (at T=0) conduction band look at density of states D and distribution.
Magneto-optical study of InP/InGaAs/InP quantum well B. Karmakar, A.P. Shah, M.R. Gokhale and B.M. Arora Tata Institute of Fundamental Research Mumbai,
Physics for Scientists and Engineers, 6e Chapter 43 - Molecules and Solids.
Optical study of Spintronics in III-V semiconductors
L.Besombes Y.Leger H. Boukari D.Ferrand H.Mariette J. Fernandez- Rossier CEA-CNRS team « Nanophysique et Semi-conducteurs » Institut Néel, CNRS Grenoble,
Simulation of X-ray Absorption Near Edge Spectroscopy (XANES) of Molecules Luke Campbell Shaul Mukamel Daniel Healion Rajan Pandey.
European Joint PhD Programme, Lisboa, Diagnostics of Fusion Plasmas Spectroscopy Ralph Dux.
Optical control of electrons in single quantum dots Semion K. Saikin University of California, San Diego.
Quantum Dots: Confinement and Applications
Optical properties and carrier dynamics of self-assembled GaN/AlGaN quantum dots Ashida lab. Nawaki Yohei Nanotechnology 17 (2006)
Photoemission Fundamentals of Data Acquisition and Analysis J. A. Kelber, June Texts: PHI handbook, Briggs and Seah Outline: I.Photoemission process.
Photoluminescence and lasing in a high-quality T-shaped quantum wires M. Yoshita, Y. Hayamizu, Y. Takahashi, H. Itoh, and H. Akiyama Institute for Solid.
Photoluminescence and lasing in a high-quality T-shaped quantum wires M. Yoshita, Y. Hayamizu, Y. Takahashi, H. Itoh, and H. Akiyama Institute for Solid.
Theory of Intersubband Antipolaritons Mauro F
Charge Carrier Related Nonlinearities
Nanomaterials – Electronic Properties Keya Dharamvir.
EELS analysis of carbon structures Nanotube seminar Gergely Kovách MTA MFA.
Technion – Israel Institute of Technology Physics Department and Solid State Institute Eilon Poem, Stanislav Khatsevich, Yael Benny, Illia Marderfeld and.
Observation of Excited Biexciton States in CuCl Quantum Dots : Control of the Quantum Dot Energy by a Photon Itoh Lab. Hiroaki SAWADA Michio IKEZAWA and.
Photo-induced ferromagnetism in bulk-Cd 0.95 Mn 0.05 Te via exciton Y. Hashimoto, H. Mino, T. Yamamuro, D. Kanbara, A T. Matsusue, B S. Takeyama Graduate.
Absorption Spectra of Nano-particles
Barbara Surma, Paweł Kamiński, Artur Wnuk and Roman Kozłowski
N. Yugami, Utsunomiya University, Japan Generation of Short Electromagnetic Wave via Laser Plasma Interaction Experiments US-Japan Workshop on Heavy Ion.
Ultrafast Carrier Dynamics in Graphene M. Breusing, N. Severin, S. Eilers, J. Rabe and T. Elsässer Conclusion information about carrier distribution with10fs.
Numericals on semiconductors
Micro-optical studies of optical properties and electronic states of ridge quantum wire lasers Presented at Department of Physics, Graduate.
Photoluminescence-excitation spectra on n-type doped quantum wire
TPC R&D status in Japan T. Isobe, H. Hamagaki, K. Ozawa, and M. Inuzuka Center for Nuclear Study, University of Tokyo Contents 1.Development of a prototype.
Observation of ultrafast nonlinear response due to coherent coupling between light and confined excitons in a ZnO crystalline film Ashida Lab. Subaru Saeki.
T-shaped quantum-wire laser
日 期: 指導老師:林克默、黃文勇 學 生:陳 立 偉 1. Outline 1.Introduction 2.Experimental 3.Result and Discussion 4.Conclusion 2.
Optical absorption anomaly of one-dimensional electron gas in a doped quantum wire Toshiyuki Ihara.
Advanced Drift Diffusion Device Simulator for 6H and 4H-SiC MOSFETs
Slide # 1 Variation of PL with temperature and doping With increase in temperature: –Lattice spacing increases so bandgap reduces, peak shift to higher.
Luminescence basics Types of luminescence
Band-edge divergence and Fermi-edge singularity in an n-type doped quantum wire. Toshiyuki Ihara Ph.D student of Akiyama group in Institute for Solid State.
Tutorial #4 – selected problems
Pulsed Propagation of Polariton Luminescence Ashida Lab. Kenta Kamizono M. Kuwata, T. Kuga, H. Akiyama, T. Hirano, and M. Matsuoka Phys. Rev. Lett. 61.
Hot Carrier Cooling and Photo-induced Refractive Index Changes in Organic-Inorganic Lead Halide Perovskites.
7 Free electrons 7.1 Plasma reflectivity 7.2 Free carrier conductivity
Abel Blazevic GSI Plasma Physics/TU Darmstadt June 8, 2004 Energy loss of heavy ions in dense plasma Goal: To understand the interaction of heavy ions.
New Sample I-V, PL & PLE Toshiyuki Ihara ’04 07/05.
Spatially resolved quasiparticle tunneling spectroscopic studies of cuprate and iron-based high-temperature superconductors Nai-Chang Yeh, California Institute.
2D Topological insulator in HgTe quantum wells Z.D. Kvon Institute of Semiconductor Physics, Novosibirsk, Russia 1. Introduction. HgTe quantum wells. 2.
橋本佑介 A,B 三野弘文 A 、山室智文 A 、蒲原俊樹 A 、神原大蔵 A 、松末俊夫 B Jigang Wang C 、 Chanjuan Sun C 、河野淳一郎 C 、嶽山正二郎 D 千葉大院自然 A 、千葉大工 B 、ライス大 ECE C 、東大物研 D Y. Hashimoto A,B.
T-shaped quantum-wire laser M. Yoshita, Y. Hayamizu, Y. Takahashi, H. Itoh, T. Ihara, and H. Akiyama Institute for Solid State Physics, Univ. of Tokyo.
Electron-phonon coupling in alpha-hexathiophene single crystals
ВСЕ О ТРИОНАХ Trions at low electron density limit 1. Charged exciton-electron complexes (trions) 2. Singlet and triplet trion states 3. Modulation doped.
Relation between photoluminescence and photoluminescence-excitation spectra in the linear response regime measured on two- dimensional electron gas T.
C 60 - Single Molecule Transistor Aniruddha Chakraborty Indian Institute of Technology Mandi, Mandi , Himachal Pradesh, India.
PL R S ℏω exc. EL Intensity (arb. units) Energy (eV) Figure S1 – Kroutvar et al  t=12µs (a) (b)   exc.   QD EFEF EFEF V read CB VB Write Readout tt.
Electronic Structure Determination of CuRh 1-x Mg x O 2 using Soft X-Ray Spectroscopies.
Raman Effect The Scattering of electromagnetic radiation by matter with a change of frequency.
Tunable excitons in gated graphene systems
Project 1.4: Hydrogenation of dilute nitrides for single photon emitters in photonic crystals Saeed Younis.
Nonlinear response of gated graphene in a strong radiation field
Ballistic miniband conduction in a graphene superlattice
Single wire laser ’ #5 C‘ Optical characterization
Gain Spectra in Photoexcited T-Shaped Quantum Wires
Presentation transcript:

 stem electron density ~ 1×10 11 cm -2  Gate Voltage ( Vg ) 0.0 ~ 0.8V  wire electron density 0 ~ 4×10 5 cm -1  arm electron density 0 ~ 1.3×10 11 cm -2 Sample

1μm step0.2μm step scan Scan 1 Micro PL measurement with 1μm / 0.2μm step automatic scanning enables us to find the center (blue circle) at every experiments. Photon Energy (eV) Gate Voltage = 0.1V T=5K Stem well excitation with cw Ti:Sa laser (λ=750nm ) 0.2μW 、 ~1μm 2 spot size Reflection geometry Resolution 0.15meV wire trion PL

Scan 2 arm exciton wire trion Gate Voltage = 0.1V check all available aria with ~500μm ( 1.0μm step ) scanning PL continue more than 500μm…

Vg=0.7VVg=0.5V Vg=0.3V Vg=0.1V 0.5μm step scanning with various Gate Voltage ( Vg ) scan 3 Photon Energy (eV) → find the high quality aria (for example : blue arrow) T=5K PL

Gate Voltage dependence Vg = 0V ~ 0.7V (0.05V step) corresponds n 1D = 0 ~ 4×10 5 cm ‐ 1 E FE = 0~1.8meV ① ② ③ ⑤ ④ ① low electron density →1.569eV exciton peak ② trion peak : 2.3meV below exciton peak (trion binding energy) ③ high density →band to band transition 、 electron plasma state ④ Band Gap Renormalization(BGR) ⑤ Fermi Edge Singularity(FES) T=5K PL

Temperature dependence T=50KT=40KT=30K Photon Energy (eV) T=5K ① BGR at every temperature ② ratio of exciton / trion peak become large with temperature ③ FES disappear at high temperature ①①① ① ②② ③ ③

Temperature dependence of Energy shift compare BGR at Gate Voltage 0.2V~0.7V 5K 30K 40K 50K Photon Energy (eV) T (K)BGR(meV) Small BGR at high temperature ①①①①

・ trion peak ( Vg=0.2 ~ 0.3V ) Temperature dependence of FWHM 5K 30K 40K 50K Photon Energy (eV) T (K)FWHM(meV ) 5 ~ ~ ~ ~ 2.3 ・ At high Gate Voltage (Vg=0.4V ~) temperature dependence of FWHM is very small ④④④④

wire HH PLE PL PL & PLE of wire stem LH stem HH arm HH Photon Energy (eV) arm LH PL detection is perpendicular to the laser excitation to improve S/N ratio. Vg = 0.15V T = 5K LH : light hole HH : heavy hole excitation detect polarization

0.0V 0.1V 0.15V 0.2V 0.3V 0.4V ① ② ③ ① neutral exciton (exciton) ② charged exciton (trion) ③ FES Photon Energy (eV) Low density PLEPL ③ Gate Voltage 0.0V ~ 0.4V Theoretical work : M. Takagiwa, T. Ogawa, 2001 density n 1D H L

0.25V 0.35V 0.4V 0.5V 0.6V 0.7V 0.15V ① Fermi Edge ② Band Edge ③??? ① ② ③ High density Photon Energy (eV) PLEPL Gate Voltage 0.4V ~ 0.7V electron plasma

 Electron density dependence of PLE varies with the position of the wire. PLE trion→electron plasma Photon Energy [eV] PL and PLE intensity [arb. Uuits] ( PLE ) Vg = 0.3V Vg = 0.35V Vg = 0.4V Vg = 0.45V Vg = 0.5V ( PL ) Vg = 0.15V PLE PL PLE PL PLE PL

 PLE ( Vg=0.15 ) and PL ( Vg=0.12 ) at different position of wire.  Resolution of PL : 0.15meV, PLE : 0.04meV 。  The gap between exciton peaks (or trion peaks) varies with electron density from 0.3meV to 0.5meV. This is probably due to stem well ML fluctuation (theoretical calculation : stem well ML fluctuation is ~0.3meV). High resolution PLE PL and PLE intensity [arb. Uuits] Photon Energy [eV] PLEPL

0.0V 0.02V 0.04V 0.06V 0.08V 0.14V 0.10V 0.12V  Exciton peak shifts with electron density : 3.5meV / V ( blue line ).  FWHM of PL spectrum (corresponds E F ) changes ~ 3.5meV/V.  Trion peak doesn’t shift.  Equation below can be expected. exciton shift PLE trionexciton : exciton : trion

D ( arm well ) / 1D well ① ① ② ② ③ ③ 0.5 wire EFEF ( me V ) EFEF ( me V ) ④④ ① E b wire : E b =2.3meV well : E b =1.4meV ② wire : blue shift, rapid damping well : blue shift, broadening ③ trion absor p wire : no shift, rapid damping well : blue shift, broadening ④ wire : large blue shift well : small blue shift begins from trion peak smoothly exciton Absorp. plasma absorp. V. Huard et al. Phys. Rev. Lett. 84 (2000) 187