Trigonometric Functions

Slides:



Advertisements
Similar presentations
Section 4.6. Graphs of Other Trigonometric Functions What you should learn Sketch the graphs of tangent functions. Sketch the graphs of cotangent functions.
Advertisements

Trigonometric Functions
Copyright © Cengage Learning. All rights reserved.
Graphing Sine and Cosine
Copyright © 2005 Pearson Education, Inc. Chapter 4 Graphs of the Circular Functions.
Graphs of Trigonometric Functions Digital Lesson.
Amplitude, Period, & Phase Shift
Unit 7: Trigonometric Functions
4.4 Graphs of Sine and Cosine: Sinusoids. By the end of today, you should be able to: Graph the sine and cosine functions Find the amplitude, period,
1 Properties of Sine and Cosine Functions The Graphs of Trigonometric Functions.
Graphs of Sine and Cosine Five Point Method. 2 Plan for the Day Review Homework –4.5 P odd, all The effects of “b” and “c” together in.
Graphs of Other Trigonometric Functions 4.6
Copyright © 2009 Pearson Addison-Wesley Graphs of the Circular Functions.
Vocabulary: Initial side & terminal side: Terminal side Terminal side
Trigonometric Review 1.6. Unit Circle The six trigonometric functions of a right triangle, with an acute angle , are defined by ratios of two sides.
Graphs of Other Trigonometric Functions. Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall.
Lesson 4-6 Graphs of Secant and Cosecant. 2 Get out your graphing calculator… Graph the following y = cos x y = sec x What do you see??
Trigonometric Functions
7.5 The Other Trigonometric Functions
5.5 Circular Functions: Graphs and Properties Mon Nov 10 Do Now Evaluate 1) Sin pi/2 2) Cos 2pi 3) Tan pi/4.
Graphing Trigonometric Functions. The sine function 45° 90° 135° 180° 270° 225° 0° 315° 90° 180° 270° 0 360° I II III IV sin θ θ Imagine a particle on.
Chapter 4 Trigonometric Functions
Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 2 Symmetry with respect to a point A graph is said to be symmetric with respect to.
5.6 Graphs of Other Trig Functions p all, all Review Table 5.6 on pg 601.
7-5 The Other Trigonometric Functions Objective: To find values of the tangent, cotangent, secant, and cosecant functions and to sketch the functions’
Amplitude, Period, and Phase Shift
Chapter 7: Trigonometric Functions L7.4 & 5: Graphing the Trigonometric Functions (Part 2)
Graphs of Tangent, Cotangent, Secant, and Cosecant
Chp. 4.5 Graphs of Sine and Cosine Functions p. 323.
Graphs of Trigonometric Functions Digital Lesson.
Graph Trigonometric Functions
Do Now:. 4.5 and 4.6: Graphing Trig Functions Function table: When you first started graphing linear functions you may recall having used the following.
Graphs of Trigonometric Functions. Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 2 DAY 1 : OBJECTIVES 1. Define periodic function.
4.5 Graphs of Trigonometric Functions 2014 Digital Lesson.
Graphs of Trigonometric Functions Digital Lesson.
More Trigonometric Graphs
Gettin’ Triggy wit it H4Zo.
Graphs of Trigonometric Functions. Properties of Sine and Cosine Functions 2 6. The cycle repeats itself indefinitely in both directions of the x-axis.
1 Properties of Sine and Cosine Functions MATH 130 Lecture on The Graphs of Trigonometric Functions.
Copyright © 2009 Pearson Addison-Wesley Trigonometric Functions.
4.4 Day 1 Trigonometric Functions of Any Angle –Use the definitions of trigonometric functions of any angle –Use the signs of the trigonometric functions.
Precalculus 1/9/2015 DO NOW/Bellwork: 1) Take a unit circle quiz 2) You have 10 minutes to complete AGENDA Unit circle quiz Sin and Cosine Transformations.
Trigonometric Functions of Real Numbers 5. More Trigonometric Graphs 5.4.
Graphs of Other Trigonometric Functions
Unit 7: Trigonometric Functions Graphing the Trigonometric Function.
Properties of Sine and Cosine Functions
Copyright © Cengage Learning. All rights reserved.
Trigonometric Graphs 6.2.
Amplitude, Period, & Phase Shift
Graphs of Trigonometric Functions
4 Graphs of the Circular Functions.
Graphs of Trigonometric Functions
Graphs of Trigonometric Functions
Graphs of Trigonometric Functions
Trigonometric Graphs 1.6 Day 1.
Graphs of Trigonometric Functions
Section 4.6. Graphs of Other Trigonometric Functions
Chapter 7: Trigonometric Functions
Graphs of Trigonometric Functions
Amplitude, Period, & Phase Shift
Unit 7: Trigonometric Functions
Graphs of Trigonometric Functions
Graphs of Trigonometric Functions
Copyright © Cengage Learning. All rights reserved.
Graphs of Trigonometric Functions
Chapter 8: The Unit Circle and the Functions of Trigonometry
Graphs of Trigonometric Functions
Chapter 8: The Unit Circle and the Functions of Trigonometry
Graphs of Trigonometric Functions
Graphs of Trigonometric Functions
Presentation transcript:

Trigonometric Functions Graphing the Trigonometric Function

E.Q: E.Q 1. What is a radian and how do I use it to determine angle measure on a circle? 2. How do I use trigonometric functions to model periodic behavior? CCSS: F.IF. 2, 4, 5 &7E; f.tf. 1,2,5 &8

Mathematical Practices: 1. Make sense of problems and persevere in solving them. 2. Reason abstractly and quantitatively. 3. Construct viable arguments and critique the reasoning of others.   4. Model with mathematics. 5. Use appropriate tools strategically. 6. Attend to precision. 7. Look for and make use of structure. 8. Look for and express regularity in repeated reasoning. 

Right Triangle Trigonometry SOH CAH TOA CHO SHA CAO Right Triangle Trigonometry Graphing the Trig Function

Graphing Trigonometric Functions Amplitude: the maximum or minimum vertical distance between the graph and the x-axis. Amplitude is always positive 5

If |a| > 1, the amplitude stretches the graph vertically. The amplitude of y = a sin x (or y = a cos x) is half the distance between the maximum and minimum values of the function. amplitude = |a| If |a| > 1, the amplitude stretches the graph vertically. If 0 < |a| > 1, the amplitude shrinks the graph vertically. If a < 0, the graph is reflected in the x-axis. y x y = sin x y = sin x y = 2 sin x y = – 4 sin x reflection of y = 4 sin x y = 4 sin x Amplitude

Graphing Trigonometric Functions Period: the number of degrees or radians we must graph before it begins again. 7

If b > 1, the graph of the function is shrunk horizontally. The period of a function is the x interval needed for the function to complete one cycle. For b  0, the period of y = a sin bx is . For b  0, the period of y = a cos bx is also . If 0 < b < 1, the graph of the function is stretched horizontally. y x period: period: 2 If b > 1, the graph of the function is shrunk horizontally. y x period: 4 period: 2 Period of a Function

The sine function Imagine a particle on the unit circle, starting at (1,0) and rotating counterclockwise around the origin. Every position of the particle corresponds with an angle, θ, where y = sin θ. As the particle moves through the four quadrants, we get four pieces of the sin graph: I. From 0° to 90° the y-coordinate increases from 0 to 1 II. From 90° to 180° the y-coordinate decreases from 1 to 0 III. From 180° to 270° the y-coordinate decreases from 0 to −1 IV. From 270° to 360° the y-coordinate increases from −1 to 0 90° 180° 270° 360° I II III IV sin θ θ 45° 90° 135° 180° 270° 225° 0° 315° θ sin θ π/2 1 π 3π/2 −1 2π Interactive Sine Unwrap

Sine is a periodic function: p = 2π One period 2π 3π π −2π −π −3π sin θ θ sin θ: Domain (angle measures): all real numbers, (−∞, ∞) Range (ratio of sides): −1 to 1, inclusive [−1, 1] sin θ is an odd function; it is symmetric wrt the origin. sin(−θ) = −sin(θ)

Graph of the Sine Function To sketch the graph of y = sin x first locate the key points. These are the maximum points, the minimum points, and the intercepts. -1 1 sin x x Then, connect the points on the graph with a smooth curve that extends in both directions beyond the five points. A single cycle is called a period. y x y = sin x Sine Function

The cosine function Imagine a particle on the unit circle, starting at (1,0) and rotating counterclockwise around the origin. Every position of the particle corresponds with an angle, θ, where x = cos θ. As the particle moves through the four quadrants, we get four pieces of the cos graph: I. From 0° to 90° the x-coordinate decreases from 1 to 0 II. From 90° to 180° the x-coordinate decreases from 0 to −1 III. From 180° to 270° the x-coordinate increases from −1 to 0 IV. From 270° to 360° the x-coordinate increases from 0 to 1 45° 90° 135° 180° 270° 225° 0° 315° 90° 180° 270° 360° IV cos θ θ III I II θ cos θ 1 π/2 π −1 3π/2 2π

Graph of the Cosine Function To sketch the graph of y = cos x first locate the key points. These are the maximum points, the minimum points, and the intercepts. 1 -1 cos x x Then, connect the points on the graph with a smooth curve that extends in both directions beyond the five points. A single cycle is called a period. y x y = cos x Cosine Function

Cosine is a periodic function: p = 2π One period 2π π 3π −2π −π −3π θ cos θ cos θ: Domain (angle measures): all real numbers, (−∞, ∞) Range (ratio of sides): −1 to 1, inclusive [−1, 1] cos θ is an even function; it is symmetric wrt the y-axis. cos(−θ) = cos(θ)

Properties of Sine and Cosine graphs The domain is the set of real numbers The range is set of “y” values such that -1≤ y ≤1 The maximum value is 1 and the minimum value is -1 The graph is a smooth curve Each function cycles through all the values of the range over an x interval or 2π The cycle repeats itself identically in both direction of the x-axis 15

Sine Graph Example: y=5sin2X Amp=5 Period=2π/2 = π Given : A sin Bx π Amplitude = IAI period = 2π/B Sine Graph Example: y=5sin2X Amp=5 Period=2π/2 = π π/2 π π/4 3π/4

Example: Sketch the graph of y = 3 cos x on the interval [–, 4]. Partition the interval [0, 2] into four equal parts. Find the five key points; graph one cycle; then repeat the cycle over the interval. max x-int min 3 -3 y = 3 cos x 2  x y x (0, 3) ( , 3) ( , 0) ( , 0) ( , –3) Example: y = 3 cos x

Use basic trigonometric identities to graph y = f (–x) Example : Sketch the graph of y = sin (–x). The graph of y = sin (–x) is the graph of y = sin x reflected in the x-axis. y x y = sin (–x) Use the identity sin (–x) = – sin x y = sin x Example : Sketch the graph of y = cos (–x). The graph of y = cos (–x) is identical to the graph of y = cos x. y x Use the identity cos (–x) = + cos x y = cos (–x) y = cos (–x) Graph y = f(-x)

Use the identity sin (– x) = – sin x: Example: Sketch the graph of y = 2 sin (–3x). Rewrite the function in the form y = a sin bx with b > 0 Use the identity sin (– x) = – sin x: y = 2 sin (–3x) = –2 sin 3x period: 2 3 = amplitude: |a| = |–2| = 2 Calculate the five key points. 2 –2 y = –2 sin 3x x y x ( , 2) (0, 0) ( , 0) ( , 0) ( , -2) Example: y = 2 sin(-3x)

Tangent Function Recall that . Since cos θ is in the denominator, when cos θ = 0, tan θ is undefined. This occurs @ π intervals, offset by π/2: { … −π/2, π/2, 3π/2, 5π/2, … } Let’s create an x/y table from θ = −π/2 to θ = π/2 (one π interval), with 5 input angle values. θ tan θ −π/2 und −π/4 −1 π/4 1 π/2 θ sin θ cos θ tan θ −π/2 −π/4 π/4 π/2 −1 und −1 1 1 1 und

Graph of Tangent Function: Periodic Vertical asymptotes where cos θ = 0 θ tan θ −π/2 π/2 One period: π θ tan θ −π/2 Und (-∞) −π/4 −1 π/4 1 π/2 Und(∞) −3π/2 3π/2 tan θ: Domain (angle measures): θ ≠ π/2 + πn Range (ratio of sides): all real numbers (−∞, ∞) tan θ is an odd function; it is symmetric wrt the origin. tan(−θ) = −tan(θ)

Graph of the Tangent Function To graph y = tan x, use the identity . At values of x for which cos x = 0, the tangent function is undefined and its graph has vertical asymptotes. y x Properties of y = tan x 1. Domain : all real x 2. Range: (–, +) 3. Period:  4. Vertical asymptotes: period: Tangent Function

Example: Tangent Function Example: Find the period and asymptotes and sketch the graph of y x 1. Period of y = tan x is . 2. Find consecutive vertical asymptotes by solving for x: Vertical asymptotes: 3. Plot several points in 4. Sketch one branch and repeat. Example: Tangent Function

Cotangent Function Recall that . Since sin θ is in the denominator, when sin θ = 0, cot θ is undefined. This occurs @ π intervals, starting at 0: { … −π, 0, π, 2π, … } Let’s create an x/y table from θ = 0 to θ = π (one π interval), with 5 input angle values. θ cot θ Und ∞ π/4 1 π/2 3π/4 −1 π Und−∞ θ sin θ cos θ cot θ π/4 π/2 3π/4 π 1 Und ∞ 1 1 −1 –1 Und−∞

Graph of Cotangent Function: Periodic Vertical asymptotes where sin θ = 0 cot θ θ cot θ ∞ π/4 1 π/2 3π/4 −1 π −∞ −3π/2 -π −π/2 π/2 π 3π/2 cot θ: Domain (angle measures): θ ≠ πn Range (ratio of sides): all real numbers (−∞, ∞) cot θ is an odd function; it is symmetric wrt the origin. tan(−θ) = −tan(θ)

Graph of the Cotangent Function To graph y = cot x, use the identity . At values of x for which sin x = 0, the cotangent function is undefined and its graph has vertical asymptotes. y x Properties of y = cot x vertical asymptotes 1. Domain : all real x 2. Range: (–, +) 3. Period:  4. Vertical asymptotes: Cotangent Function

Cosecant is the reciprocal of sine Vertical asymptotes where sin θ = 0 csc θ θ −3π −2π −π π 2π 3π sin θ One period: 2π sin θ: Domain: (−∞, ∞) Range: [−1, 1] csc θ: Domain: θ ≠ πn (where sin θ = 0) Range: |csc θ| ≥ 1 or (−∞, −1] U [1, ∞] sin θ and csc θ are odd (symm wrt origin)

Graph of the Cosecant Function To graph y = csc x, use the identity . At values of x for which sin x = 0, the cosecant function is undefined and its graph has vertical asymptotes. x y Properties of y = csc x 1. domain : all real x 2. range: (–,–1]  [1, +) 3. period:  4. vertical asymptotes: where sine is zero. Cosecant Function

Secant is the reciprocal of cosine One period: 2π π 3π −2π 2π −π −3π θ sec θ cos θ Vertical asymptotes where cos θ = 0 cos θ: Domain: (−∞, ∞) Range: [−1, 1] sec θ: Domain: θ ≠ π/2 + πn (where cos θ = 0) Range: |sec θ | ≥ 1 or (−∞, −1] U [1, ∞] cos θ and sec θ are even (symm wrt y-axis)

Graph of the Secant Function The graph y = sec x, use the identity . At values of x for which cos x = 0, the secant function is undefined and its graph has vertical asymptotes. y x Properties of y = sec x 1. domain : all real x 2. range: (–,–1]  [1, +) 3. period: 2 4. vertical asymptotes: Secant Function

Summary of Graph Characteristics Def’n ∆ о Period Domain Range Even/Odd sin θ csc θ cos θ sec θ tan θ cot θ

Summary of Graph Characteristics Def’n ∆ о Period Domain Range Even/Odd sin θ opp hyp y r 2π (−∞, ∞) −1 ≤ x ≤ 1 or [−1, 1] odd csc θ 1 .sinθ r .y θ ≠ πn |csc θ| ≥ 1 or (−∞, −1] U [1, ∞) cos θ adj hyp x All Reals or (−∞, ∞) even sec θ 1 . cosθ r y θ ≠ π2 +πn |sec θ| ≥ 1 or tan θ sinθ cosθ y π cot θ cosθ .sinθ x y

Translations of Trigonometric Graphs Without looking at your notes, try to sketch the basic shape of each trig function: 1) Sine: 2) Cosine: 3) Tangent:

More Transformations We have seen two types of transformations on trig graphs: vertical stretches and horizontal stretches. There are three more: vertical translations (slides), horizontal translations, and reflections (flips).

More Transformations Here is the full general form for the sine function: Just as with parabolas and other functions, c and d are translations: c slides the graph horizontally (opposite of sign) d slides the graph vertically Also, if a is negative, the graph is flipped vertically.

More Transformations To graph a sine or cosine graph: Graph the original graph with the correct amplitude and period. Translate c units horizontally and d units vertically. Reflect vertically at its new position if a is negative (or reflect first, then translate).

Examples Describe how each graph would be transformed:

Examples State the amplitude and period, then graph: x -2π 2π

Examples State the amplitude and period, then graph: x -2π 2π

Examples State the amplitude and period, then graph: x -2π 2π

Examples Write an equation of the graph described: The graph of y = cos x translated up 3 units, right π units, and reflected vertically.