When  meets IR the clouds hiding behind the dust & cosmic rays Isabelle Grenier Jean-Marc Casandjian Régis Terrier AIM, Service d’Astrophysique, CEA Saclay.

Slides:



Advertisements
Similar presentations
Gas and mm Dust emission François Boulanger et Guilaine Lagache (Institut d Astrophysique Spatiale, Orsay) Tracing diffuse ISM components in te Solar Neighborhood.
Advertisements

Cold dust in the Galactic halo: first detection of dust emission in a high-velocity cloud : Francois Boulanger et Marc-Antoine Miville-Deschênes Miville.
H 2 Formation in the Perseus Molecular Cloud: Observations Meet Theory.
The Relation between Atomic and Molecular Gas in the Outer Disks of Galaxies Jonathan Braine Observatoire de Bordeaux with... N. Brouillet, E. Gardan,
DUST AND MOLECULES IN SPIRAL GALAXIES as seen with the JCMT F.P. Israel, Sterrewacht Leiden.
The Distribution of the Milky Way ISM as revealed by the [CII] 158um line. Jorge L. Pineda Jet Propulsion Laboratory, California Institute of Technology.
Fermi LAT Observations of Galactic and Extragalactic Diffuse Emission Jean-Marc Casandjian, on behalf of the Fermi LAT collaboration 7 questions addressed.
Chapter 19: Between the Stars: Gas and Dust in Space.
Astroparticle physics 2. The Milky Way interstellar medium and cosmic-rays Alberto Carramiñana Instituto Nacional de Astrofísica, Óptica y Electrónica.
Dust/Gas Correlation in the Large Magellanic Cloud: New Insights from the HERITAGE and MAGMA surveys Julia Roman-Duval July 14, 2010 HotScI.
To date: Observational manifestations of dust: 1.Extinction – absorption/scattering diminishes flux at wavelengths comparable to light – implies particles.
PRISMAS PRISMAS PRobing InterStellar Molecules with Absorption line Studies M. Gerin, M. Ruaud, M. de Luca J. Cernicharo, E. Falgarone, B. Godard, J. Goicoechea,
GHz Measurements of anomalous dust emission Richard Davis, Clive Dickinson, Rod Davies, Anthony Banday Paris.
Fermi-LAT Study of Cosmic-Ray Gradient in the Outer Galaxy --- Fermi-LAT view of the 3 rd Quadrant --- Tsunefumi Mizuno (Hiroshima Univ.), Luigi Tibaldo.
Heiles meeting, Sep 04 Where is the Atomic Carbon in Ophiuchus Di Li Paul Goldsmith Gary Melnick and SWAS team.
Challenges in Revealing Dark Matter from the High Energy Gamma-Ray Background (Continuum) Ranga-Ram Chary Spitzer Science Center, Caltech
Galactic Diffuse Gamma-ray Emission, the EGRET Model, and GLAST Science Stanley D. Hunter NASA/GSFC Code 661
The Interstellar Medium Astronomy 315 Professor Lee Carkner Lecture 19.
Millimeter Spectroscopy Joanna Brown. Why millimeter wavelengths? >1000 interstellar & circumstellar molecular lines Useful for objects at all different.
The Interstellar Medium Astronomy 315 Professor Lee Carkner Lecture 19.
The Mass of the Galaxy We can use the orbital velocity to deduce the mass of the Galaxy (interior to our orbit): v orb 2 =GM/R. This comes out about 10.
A Submillimeter study of the Magellanic Clouds Tetsuhiro Minamidani (Nagoya University) & NANTEN team ASTE team Mopra – ATNF team.
Chapter 11: The Interstellar Medium Region in the Constellation Orion named the Orion Nebula which is the closest star formation region to us. Jets and.
The Interstellar Medium Astronomy 315 Professor Lee Carkner Lecture 18.
University of Chicago 2007 July 30 SOFIA-POL 2007 The Infrared - Millimeter Polarization Spectrum John Vaillancourt California Institute of Technology.
ASTR112 The Galaxy Lecture 6 Prof. John Hearnshaw 10. Galactic spiral structure 11. The galactic nucleus and central bulge 11.1 Infrared observations Galactic.
The CNM – How Much, How Cold, and Where? John Dickey University of Tasmania 4 February 2013 C + as an Astronomical Tool.
A hot topic: the 21cm line I Benedetta Ciardi MPA.
Molecular absorption in Cen A on VLBI scales Huib Jan van Langevelde, JIVE Ylva Pihlström, NRAO Tony Beasley, CARMA.
Nebular Astrophysics.
The Interstellar Medium Chapter 14. Is There Anything Between the Stars? The answer is yes! And that “stuff” forms some of the most beautiful objects.
C + As a Primary Coolant and Tracer of Star Formation Dec 21 st, 2012.
Accurate measurement of interstellar hydrogen as the target of hadronic gamma rays Yasuo Fukui Nagoya University Southern Observatories CTA meeting April.
The Interstellar Medium and Interstellar Molecules Ronald Maddalena National Radio Astronomy Observatory.
Note that the following lectures include animations and PowerPoint effects such as fly-ins and transitions that require you to be in PowerPoint's Slide.
Chapter 15: Star Formation and the Interstellar Medium.
Interstellar Matter and Star Formation in the Magellanic Clouds François Boulanger (IAS) Collaborators: Caroline Bot (SSC), Emilie Habart (IAS), Monica.
Radio Astronomy Emission Mechanisms. NRAO/AUI/NSF3 Omega nebula.
1 Galactic Astronomy Topics The Milky Way Galaxy; Milky Way Anatomy, esp. the Galactic Core; Milky Way Formation; Galaxy types; Motivation Galaxies are.
Science with continuum data ALMA continuum observations: Physical, chemical properties and evolution of dust, SFR, SED, circumstellar discs, accretion.
ASTR112 The Galaxy Lecture 7 Prof. John Hearnshaw 11. The galactic nucleus and central bulge 11.1 Infrared observations (cont.) 11.2 Radio observations.
Tsunefumi Mizuno 1 Fermi_Diffuse_ASJ_2010Mar.ppt Fermi-LAT Study of Galactic Cosmic-Ray Distribution -- CRs in the Outer Galaxy -- Tsunefumi Mizuno Hiroshima.
What we look for when we look for the dark gas * John Dickey Wentworth Falls 26 Nov 2013 *Wordplay on a title by Raymond Carver, "What we talk about, when.
H 3 + Toward and Within the Galactic Center Tom Geballe, Gemini Observatory With thanks to Takeshi Oka, Ben McCall, Miwa Goto, Tomonori Usuda.
Molecular gas and dust in the Magellanic Clouds C. Bot on behalf of Mónica Rubio Dusty, 29 oct 2004.
GLAST LAT Project GLAST Lunch, 27 April What Do Gamma-Ray Astronomers Need to Know about Molecular Clouds? S. W. Digel SLAC Gamma-ray Large Area.
Dust cycle through the ISM Francois Boulanger Institut d ’Astrophysique Spatiale Global cycle and interstellar processing Evidence for evolution Sub-mm.
Molecular clouds in the center of M81 Viviana Casasola Observatoire de Paris-LERMA & Università di Padova, Dipartimento di Astronomia Scuola Nazionale.
AST101 Lecture 20 The Parts of the Galaxy. Shape of the Galaxy.
Jet Propulsion Laboratory
Chapter 11 The Interstellar Medium
ISM X-ray Astrophysics Randall K. Smith Chandra X-ray Center.
Propagation of CR electrons and the interpretation of diffuse  rays Andy Strong MPE, Garching GLAST Workshop, Rome, 17 Sept 2003 with Igor Moskalenko.
1 Probing MHD Shocks with high-J CO observations: W28F SOFIA Observations 1.W28 is a mature supernova remnant (>2x10 4 yr old) located in the Inner Galaxy.
ASTR112 The Galaxy Lecture 9 Prof. John Hearnshaw 12. The interstellar medium: gas 12.3 H I clouds (and IS absorption lines) 12.4 Dense molecular clouds.
In previous episodes …... Stars are formed in the spiral arms of the Galaxy, in the densest and coldest regions of the interstellar medium, which are.
Gamma-ray Measurements of the distribution of Gas and Cosmic Ray in the Interstellar Space Yasushi Fukazawa Hiroshima University.
Chapter 14 The Interstellar Medium. All of the material other than stars, planets, and degenerate objects Composed of gas and dust ~1% of the mass of.
論文紹介 _2010-Jan.ppt Tsunefumi Mizuno 1 Fermi 衛星でみた拡散ガンマ線放射と銀河宇宙線 Tsunefumi Mizuno Hiroshima Univ. June 15, 2009 "Fermi Large Area Telescope Measurements.
AST101 Lecture 20 Our Galaxy Dissected. Shape of the Galaxy.
Fermi LAT Observations of Galactic and Extragalactic Diffuse Emission Jean-Marc Casandjian, on behalf of the Fermi LAT collaboration 7 questions addressed.
Cosmic Background Explorer: COBE
Star Formation The stuff between the stars Nebulae Giant molecular clouds Collapse of clouds Protostars Reading
Ciro Pinto(1) J. S. Kaastra(1,2), E. Costantini(1), F. Verbunt(1,2)
EGRET and the local interstellar emission
Status and issues for the LAT interstellar emission model
Molecular Gas Distribution of our Galaxy: NANTEN Galactic Plane Survey
Galactic Diffuse Emission for DC2
Region in the Constellation Orion named the Orion Nebula which is the closest star formation region to us. Jets and disks appear to be part of the star.
Presentation transcript:

when  meets IR the clouds hiding behind the dust & cosmic rays Isabelle Grenier Jean-Marc Casandjian Régis Terrier AIM, Service d’Astrophysique, CEA Saclay

atomic & molecular gas CO survey from Dame et al. ‘01 Leiden-Dwingeloo 21 cm line survey at  > -30° Dickey-Lockman 21 cm at  < -30°

100 µm dust emission IRAS 100 µm calibrated using DIRBESchlegel ‘98

dust reddening & 94 GHz emission IRAS 100µm + DIRBE + DMR + FIRAS => I dust at 94GHz for 2.70 B (16.2K) B (9.2K) Finkbeiner ‘99 IRAS 100µm + DIRBE 240µ/100µ => N dust for uniform ² B (18.2K) N dust scaled to E(B-V) from external galaxies Schlegel ’98

 rays above 100 MeV Compton-EGRET interstellar radiation

the local interstellar model |b| > 5° or 10° cosmic-ray density ~ uniform at D < kpc

interstellar fit warm dust  cold dust  HI+CO+EBV HI+CO+I100µ HI+CO EBV I100µ HI+CO+I94GHz I94GHz 2 ln(L) HI+CO+EBV HI+CO+I100µ HI+CO EBV I100µ HI+CO+I94GHz I94GHz ~ 

fit improvements IC emission from the coldest dust <<  -ray excess

fit improvement

H 2 / dark / dense HI matriochkas l 0 = 70° movies at

local gas reserves opt. thin HI q HI ≈ q dark X > 100 MeV = 1.74 ± 0.04 X > 300 MeV = 1.61 ± H 2 cm -2 K -1 km -1 s line-of-sight average densities

dark clouds low, but enough shielding –using A V /E(B-V) = 3.1 normal metallicity

anomalous dust anomalous dust emission Bennett ’03, Lagache ‘04 –from spinning dust? –not local synchrotron variations Spectral Index (408 MHz, 23 GHz)  GHz

cold HI or cold H 2 ? maybe HI –n dark ≈ n CNM –R dark ≈ R denseHI –but maybe H 2 –enough A v –[NH/E(B-V)] close to the CO one enough grains to form H 2 –cold environment (T dust ~ 10 K) –H 2 absorption lines without CO around Cham (Gry ‘02) => n HI +2n H2 ~ 50 H cm -3 => 2N(H 2 )/NH tot = 50-70% –H 2 absorption lines without CO in cirrus clouds (Reach ‘94)

any CO detection? beam diluted tiny clumps for WCO < 2 K km/s

any CO detection? why not? too cold? T dust ~ 10 K, densities to low? only tips of icebergs seen

dark vs. H 2 and HI mass mass ratios ind. of distance M dark /M CO ↓ with M CO 6:1:6 5:1:5 2:1: :1:3 0.2:1: :1:1 0.7:1:3 CO:dark:HI

dark vs. H 2 and HI mass locally M dark /M CO ↓ with M CO M dark ~ M  M H2-CO ~ M  M denseHI ~ M  M dark /M CO ~ % M dark /M desnHI ~ % local ISM biased to large H 2 clouds OBass, HII little small-star formation lot of small-star formation older OBass, HII

CO mass spectrum in the Milky Way in the outer galaxy –complete down to 500 M  –and up to D < 10 kpc in the inner Galaxy & center higher masses sampled Williams & McKee ’97 Miyasaki ‘00 for 10 3 ≤ M CO ≤ 10 6 M  more if 500 M  or flatter M dk (M cO) dN/dM  M -1.8 ± 0.03 Heyer ‘01 Miyasaki ‘00  M dk /M CO

X ratio X = N(H 2 ) / W(CO) = q CO /2q HI if n CR (HI)~n CR (H 2 ) –no virial equilibrium or gas/dust assumption, –but small bias from structured IC emission ← e - + far-IR field CloudR Gal (kpc) X in mol. cm -2 K -1 km -1 s Ophiuchus ± 0.2Local average at |b| > 5°: 1.61 ± 0.04 (>100 MeV) 1.73 ± 0.03 (>300 MeV) 1.8 ± 0.3 (I 100µ Dame ’01) Taurus ± 0.10 Cepheus ± 0.14Galactic average: 1.9 ± 0.2 ( Strong ’96) 1.56 ± 0.05 (Hunter ’97) Orion ± 0.15 Monoceros ± 0.31larger X in the outer Galaxy