RF System On Chip Quadrature VCO Comparison1/12 Fortià Vila VergésUniversitat Politecnica de Catalunya E.T.S.E.T.B. Fortià Vila Vergés 19th June 2007 Introduction Design procedure Comparison Conclusions Design and comparison of several 2.5-GHz CMOS Quadrature VCO using Epson CTH180nm technology Design and comparison of several 2.5-GHz CMOS Quadrature VCO using Epson CTH180nm technology
RF System On Chip Quadrature VCO Comparison2/12 Fortià Vila VergésUniversitat Politecnica de Catalunya E.T.S.E.T.B. 1 1 Introduction 2 2 Design procedure 3 3 Coupling capacitors VCO 4 4 Common point VCO 5 5 Crossed capacitors VCO 6 6 Conclusions
RF System On Chip Quadrature VCO Comparison3/12 Fortià Vila VergésUniversitat Politecnica de Catalunya E.T.S.E.T.B. VCO Introduction Quadrature Amplitude & Stabilization Time Phase noise
RF System On Chip Quadrature VCO Comparison4/12 Fortià Vila VergésUniversitat Politecnica de Catalunya E.T.S.E.T.B. Fixed parameters Design Procedure Capacitance Transconductance Transistors design Power consumption<1mW High Q inductor (19-6.8nH). High PSRR rejection. Low power supply (1.2V) Coarse with a capacitor bench Fine with the varactor Source degradation Capacitive Q Transistor losses Load impedance Start-up W/L=600 L=180nm W=100μm Differential LC-tank topology RF frequency 2.5GHz
RF System On Chip Quadrature VCO Comparison5/12 Fortià Vila VergésUniversitat Politecnica de Catalunya E.T.S.E.T.B. Schematic Coupling Transistors VCO Quadrature generator Design quadrature ratio Better phase noise Worse phase error
RF System On Chip Quadrature VCO Comparison6/12 Fortià Vila VergésUniversitat Politecnica de Catalunya E.T.S.E.T.B. Coupling Transistors VCO Stabilization time & Vp Phase error Output power & phase noise Noise summary Biasing: 7.860e-13 81% Quadrature: e-14 6%
RF System On Chip Quadrature VCO Comparison7/12 Fortià Vila VergésUniversitat Politecnica de Catalunya E.T.S.E.T.B. Schematic Common Point VCO Quadrature generator Main idea Odd harmonics in differential mode Even harmonics in common mode
RF System On Chip Quadrature VCO Comparison8/12 Fortià Vila VergésUniversitat Politecnica de Catalunya E.T.S.E.T.B. Common Point VCO Stabilization time & Vp Phase error Output power & phase noise Noise summary Bias: 6.08e % Quadrature: 3.31e %
RF System On Chip Quadrature VCO Comparison9/12 Fortià Vila VergésUniversitat Politecnica de Catalunya E.T.S.E.T.B. Schematic Crossed Capacitors VCO Quadrature generator Biasing solution Transmission gate
RF System On Chip Quadrature VCO Comparison10/12 Fortià Vila VergésUniversitat Politecnica de Catalunya E.T.S.E.T.B. Crossed Capacitors VCO Stabilization time & Vp Phase error Output power & phase noise Noise summary Bias: 5.16e % Quadrature: 6.29e %
RF System On Chip Quadrature VCO Comparison11/12 Fortià Vila VergésUniversitat Politecnica de Catalunya E.T.S.E.T.B. Comparison Coupled Transistors VCO Common Point VCO Crossed Capacitors VCO Output Voltage Signal (Vp) 530mV580mV450mV Stabilization Time 90ns35ns180ns Phase Error3º1º0.1º Phase Noise dBc dBc-121.3dBc Min. Harmonic difference -50 dBm-52 dBm-48 dBm
RF System On Chip Quadrature VCO Comparison12/12 Fortià Vila VergésUniversitat Politecnica de Catalunya E.T.S.E.T.B. 1 1 This results are under a low power consumption, low power supply & high PSRR context. 2 2 Using short channel transistors degrade the gain. 3 3 Technology mismatch it’s another important factor. 4 4 Avoid transistors if we can use passive elements. 5 5 Noise contribution has more to do with a topology than a device. Conclusions