RF System On Chip Quadrature VCO Comparison1/12 Fortià Vila VergésUniversitat Politecnica de Catalunya E.T.S.E.T.B. Fortià Vila Vergés 19th June 2007 Introduction.

Slides:



Advertisements
Similar presentations
Design of an LC-VCO with One Octave Tuning Range
Advertisements

EKT 441 MICROWAVE COMMUNICATIONS
COMMUNICATION SYSTEM EEEB453 Chapter 3 (III) ANGLE MODULATION
We have so far seen the structure of a differential amplifier, the input stage of an operational amplifier. The second stage of the simplest possible operational.
Institut für Theoretische Elektrotechnik Dipl.-Ing. Jan Bremer Large Signal Modeling of Inversion-Mode MOS Varactors in VCOs MOS-AK Meeting April.
Ultra Low Power PLL Implementations Sudhanshu Khanna ECE
1/42 Changkun Park Title Dual mode RF CMOS Power Amplifier with transformer for polar transmitters March. 26, 2007 Changkun Park Wave Embedded Integrated.
Built-In Self-Test for Radio Frequency System-On-Chip Bruce Kim The University of Alabama.
Design of RF CMOS Low Noise Amplifiers Using a Current Based MOSFET Model Virgínia Helena Varotto Baroncini Oscar da Costa Gouveia Filho.
Department of EECS University of California, Berkeley EECS 105 Fall 2003, Lecture 22 Lecture 22: Multistage Amps Prof. Niknejad.
CMOS Technology Characterization for Analog and RF Design Author : Behzad Razavi Presenter : Kyungjin Yoo.
VLSI System Design – ECES 681 Lecture: Interconnect -1 Prashant Bhadri Office: Rhodes Hall - 933C Department of ECECS, College of.
NA62 front end architecture and performance Jan Kaplon/Pierre Jarron.
Principles of Electronic Communication Systems
Chapter 6 FM Circuits.
LECTURE 4. HIGH-EFFICIENCY POWER AMPLIFIER DESIGN
Chapter 16 CMOS Amplifiers
Low Noise Amplifier. DSB/SC-AM Modulation (Review)
1 Electronic Circuits COMMON EMITTER CIRCUITS. 2 Electronic Circuits AMPLIFIERS CAN BE CLASSIFIED AS EITHER: VOLTAGE AMPS POWER AMPS AMPLIFIERS CAN BE.
Chapter #12: Operational-Amplifier Circuits
ANALOGUE ELECTRONICS II
Chihou Lee, Terry Yao, Alain Mangan, Kenneth Yau, Miles Copeland*, Sorin Voinigescu University of Toronto - Edward S. Rogers, Sr. Dept. of Electrical &
1 Low Phase Noise Oscillators for MEMS inductors Sofia Vatti Christos Papavassiliou.
BY MD YOUSUF IRFAN.  GLOBAL Positioning System (GPS) receivers for the consumer market require solutions that are compact, cheap, and low power.  This.
Worcester Polytechnic Institute
An Ultra-Wideband CMOS VCO with 3~5GHz Tuning Range 指導教授 : 林志明 教授 學 生 : 劉彥均 RFIT IEEE International Workshop on Radio-Frequency Integration Technology,
Part B-3 AMPLIFIERS: Small signal low frequency transistor amplifier circuits: h-parameter representation of a transistor, Analysis of single stage transistor.
Experimental results obtained from a 1.6 GHz CMOS Quadrature Output PLL with on-chip DC-DC Converter Owen Casha Department of Micro & Nanoelectronics University.
1 姓名 : 李國彰 指導教授 : 林志明老師 A 1v 2.4GHz CMOS POWER AMPLIFIER WITH INTEGRATED DIODE LINEARIZER ( The 2004 IEEE Asia-Pacific Conference on Circuits and Systems,
Design of LNA at 2.4 GHz Using 0.25 µm Technology
Seoul National University CMOS for Power Device CMOS for Power Device 전파공학 연구실 노 영 우 Microwave Device Term Project.
1 A 56 – 65 GHz Injection-Locked Frequency Tripler With Quadrature Outputs in 90-nm CMOS Chan, W.L.; Long, J.R.; Solid-State Circuits, IEEE Journal of.
S. -L. Jang, Senior Member, IEEE, S. -H. Huang, C. -F. Lee, and M. -H
Microwave Traveling Wave Amplifiers and Distributed Oscillators ICs in Industry Standard Silicon CMOS Kalyan Bhattacharyya Supervisors: Drs. J. Mukherjee.
ADS Design Guide.
MSICT – RF Communication SoC POWER OPTIMIZED LC VCO & MIXER CO-DESIGN Daniel Götz, Milosz Sroka June 20th, 2006.
A CMOS VCO with 2GHz tuning range for wideband applications Speaker : Shih-Yi Huang.
A New RF CMOS Gilbert Mixer With Improved Noise Figure and Linearity Yoon, J.; Kim, H.; Park, C.; Yang, J.; Song, H.; Lee, S.; Kim, B.; Microwave Theory.
Mixed Signal Chip LAB.Kyoung Tae Kang Dynamic Offset Cancellation Technique KyoungTae Kang, Kyusun Choi CSE598A/EE597G Spring 2006.
VI th INTERNATIONAL MEETING ON FRONT END ELECTRONICS, Perugia, Italy A. Dorokhov, IPHC, Strasbourg, France 1 NMOS-based high gain amplifier for MAPS Andrei.
ECE4430 Project Presentation
FET Amplifiers Chapter 8 Boylestad Electronic Devices and Circuit Theory.
McGraw-Hill © 2008 The McGraw-Hill Companies, Inc. All rights reserved. Principles of Electronic Communication Systems FM Circuits.
A GHz Fourth-Harmonic Voltage-Controlled Oscillator in 130nm SiGe BiCMOS Technology Yang Lin and David E. Kotecki Electrical and Computer Engineering.
A NEW METHOD TO STABILIZE HIGH FREQUENCY HIGH GAIN CMOS LNA RF Communications Systems-on-chip Primavera 2007 Pierpaolo Passarelli.
1 Your Name Your Department or Company Date, 2015.
A Tail Current-Shaping Technique to Reduce Phase Noise in LC VCOs 指導教授 : 林志明 教授 學 生 : 劉彥均 IEEE 2005CUSTOM INTEGRATED CIRCUITS CONFERENCE Babak Soltanian.
Jinna Yan Nanyang Technological University Singapore
1 Microwave Semiconductor Devices Major Applications Substrate Material Frequency Limitation Device Transmitters AmplifiersSi, GaAs, InP< 300 GHzIMPATT.
1 1.3 V low close-in phase noise NMOS LC-VCO with parallel PMOS transistors Moon, H.; Nam, I.; Electronics Letters Volume 44, Issue 11, May Page(s):676.
HW #5 7.10, 7.21, 7.71, 7.88 Due Tuesday March 3, 2005.
Voltage Controlled Oscillators
A Unified Approach to Design Distributed Amplifiers Rasit Onur Topaloglu PhD. Student
Escola Tècnica Superior d’Enginyeria de Telecomunicació de Barcelona
Introduction LNA Design figure of merits: operating power consumption, power gain, supply voltage level, noise figure, stability (Kf & B1f), linearity.
CommunicationElectronics Principles & Applications Chapter 5 Frequency Modulation Circuits.
CSE598A Analog Mixed Signal CMOS Chip Design FM Mixer CMOS Realization (Final Presentation) Zhang Yi.
April 12 | Comparison of Sophisticated Synthesizer Concepts and Modern Step Attenuator Implementations | 2 Comparison of Sophisticated Synthesizer Concepts.
VI. HIGH-EFFICIENCY SWITCHMODE HYBRID AND MMIC POWER AMPLIFIERS:
High Gain Transimpedance Amplifier with Current Mirror Load By: Mohamed Atef Electrical Engineering Department Assiut University Assiut, Egypt.
Chapter 8: FET Amplifiers
Basic MOS Amplifiers: DC and Low Frequency Behavior
CSE598A Analog Mixed Signal CMOS Chip Design
Day 2 I_DC RFin RFout Bias De-coupling Circuit Lab5: Device Biasing.
FET Amplifiers.
Variable Gain CMOS LNA MOREIRA E SILVA, Paulo Marcio, DE SOUSA, Fernando Rangel Introduction Simulation.
Ali Fard M¨alardalen University, Dept
Basic Amplifiers and Differential Amplifier
Chapter 8: FET Amplifiers
Amplifiers for high efficiency loudspeakers
Presentation transcript:

RF System On Chip Quadrature VCO Comparison1/12 Fortià Vila VergésUniversitat Politecnica de Catalunya E.T.S.E.T.B. Fortià Vila Vergés 19th June 2007 Introduction Design procedure Comparison Conclusions Design and comparison of several 2.5-GHz CMOS Quadrature VCO using Epson CTH180nm technology Design and comparison of several 2.5-GHz CMOS Quadrature VCO using Epson CTH180nm technology

RF System On Chip Quadrature VCO Comparison2/12 Fortià Vila VergésUniversitat Politecnica de Catalunya E.T.S.E.T.B. 1 1 Introduction 2 2 Design procedure 3 3 Coupling capacitors VCO 4 4 Common point VCO 5 5 Crossed capacitors VCO 6 6 Conclusions

RF System On Chip Quadrature VCO Comparison3/12 Fortià Vila VergésUniversitat Politecnica de Catalunya E.T.S.E.T.B.  VCO Introduction  Quadrature  Amplitude & Stabilization Time  Phase noise

RF System On Chip Quadrature VCO Comparison4/12 Fortià Vila VergésUniversitat Politecnica de Catalunya E.T.S.E.T.B.  Fixed parameters Design Procedure  Capacitance  Transconductance  Transistors design  Power consumption<1mW  High Q inductor (19-6.8nH).  High PSRR rejection.  Low power supply (1.2V)  Coarse with a capacitor bench  Fine with the varactor  Source degradation  Capacitive Q  Transistor losses  Load impedance  Start-up  W/L=600  L=180nm  W=100μm  Differential LC-tank topology  RF frequency 2.5GHz

RF System On Chip Quadrature VCO Comparison5/12 Fortià Vila VergésUniversitat Politecnica de Catalunya E.T.S.E.T.B.  Schematic Coupling Transistors VCO  Quadrature generator  Design quadrature ratio  Better phase noise  Worse phase error

RF System On Chip Quadrature VCO Comparison6/12 Fortià Vila VergésUniversitat Politecnica de Catalunya E.T.S.E.T.B. Coupling Transistors VCO  Stabilization time & Vp  Phase error  Output power & phase noise  Noise summary  Biasing: 7.860e-13 81%  Quadrature: e-14 6%

RF System On Chip Quadrature VCO Comparison7/12 Fortià Vila VergésUniversitat Politecnica de Catalunya E.T.S.E.T.B.  Schematic Common Point VCO  Quadrature generator  Main idea  Odd harmonics in differential mode  Even harmonics in common mode

RF System On Chip Quadrature VCO Comparison8/12 Fortià Vila VergésUniversitat Politecnica de Catalunya E.T.S.E.T.B. Common Point VCO  Stabilization time & Vp  Phase error  Output power & phase noise  Noise summary  Bias: 6.08e %  Quadrature: 3.31e %

RF System On Chip Quadrature VCO Comparison9/12 Fortià Vila VergésUniversitat Politecnica de Catalunya E.T.S.E.T.B.  Schematic Crossed Capacitors VCO  Quadrature generator  Biasing solution  Transmission gate

RF System On Chip Quadrature VCO Comparison10/12 Fortià Vila VergésUniversitat Politecnica de Catalunya E.T.S.E.T.B. Crossed Capacitors VCO  Stabilization time & Vp  Phase error  Output power & phase noise  Noise summary  Bias: 5.16e %  Quadrature: 6.29e %

RF System On Chip Quadrature VCO Comparison11/12 Fortià Vila VergésUniversitat Politecnica de Catalunya E.T.S.E.T.B. Comparison Coupled Transistors VCO Common Point VCO Crossed Capacitors VCO Output Voltage Signal (Vp) 530mV580mV450mV Stabilization Time 90ns35ns180ns Phase Error3º1º0.1º Phase Noise dBc dBc-121.3dBc Min. Harmonic difference -50 dBm-52 dBm-48 dBm

RF System On Chip Quadrature VCO Comparison12/12 Fortià Vila VergésUniversitat Politecnica de Catalunya E.T.S.E.T.B. 1 1 This results are under a low power consumption, low power supply & high PSRR context. 2 2 Using short channel transistors degrade the gain. 3 3 Technology mismatch it’s another important factor. 4 4 Avoid transistors if we can use passive elements. 5 5 Noise contribution has more to do with a topology than a device. Conclusions