Transversal Target Asymmetries in Threshold

Slides:



Advertisements
Similar presentations
Recent Results from the Programme at the Glasgow Tagged Photon Spectrometer in Mainz E. J. Downie University of Glasgow.
Advertisements

Recent Results from the Collaboration E. J. Downie DNP Meeting October 2009.
Polarisation Observables for Strangeness Photoproduction on a Frozen Spin Target with CLAS at Jefferson Lab Stuart Fegan Nuclear Physics Group University.
Introduction Glasgow’s NPE research Group uses high precision electromagnetic probes to study the subatomic structure of matter. Alongside this we are.
G measurement at Ken Livingston, University of Glasgow, Scotland Slides from: Ken Livingston: Various talks at -
V.L. Kashevarov. Crystal Collaboration Meeting, Edinburg,13-15 Sept Photoproduction of    on protons ► Identification of  p →  o.
Rory Miskimen University of Massachusetts, Amherst
A polarized solid state target for photon induced double polarization experiments at ELSA H. Dutz TR16 Bommerholz Hartmut Dutz, S. Goertz, A.
Institut für Kernphysik Bosen th August 2010 Andreas Thomas Polarised Targets for Photoproduction Experiments.
Study of two pion channel from photoproduction on the deuteron Lewis Graham Proposal Phys 745 Class May 6, 2009.
Proton polarization measurements in π° photo-production --On behalf of the Jefferson Lab Hall C GEp-III and GEp-2γ collaboration Wei Luo Lanzhou University.
Proton polarization measurements in π° photo- production --on behalf of the Jefferson Lab Hall C GEp-III and GEp-2 γ collaboration 2010 Annual Fall Meeting.
T.C. Jude D.I. Glazier, D.P. Watts The University of Edinburgh Strangeness Photoproduction: Polarisation Transfer & Cross-Section Measurements.
Polarisation transfer in hyperon photoproduction near threshold Tom Jude D I Glazier, D P Watts The University of Edinburgh.
T.C. Jude D.I. Glazier, D.P. Watts The University of Edinburgh Strangeness Photoproduction At Threshold Energies.
Crystal Ball Experiment at MAMI Recent Results W.J. Briscoe for the A2 Collaboration (thanks for the sabbatical support) MESONS 2010 SFB443.
Status of the recoil nucleon polarimeter Dan Watts, Derek Glazier, Mark Sikora (SUPA PhD student) (University of Edinburgh, UK)
M. Dugger, Jlab User Meeting, June First data with FROST First data with FROST Michael Dugger* Arizona State University *Work at ASU is supported.
Recoil Polarimetry in Meson Photoproduction at MAMI Mark Sikora, Derek Glazier, Dan Watts School of Physics, University of Edinburgh, UK Introduction The.
Study of the Halo Nucleus 6 He using the 6 Li(   ) 6 He Reaction Derek Branford - Edinburgh University for the A2-Collaboration MAMI-B Mainz.
K +  photoproduction with the Crystal Ball at MAMI T.C. Jude The University of Edinburgh New method of K + detection with the Crystal Ball Extraction.
The Gas Čerenkov Detector for the Crystal- Barrel Experiment at ELSA D. Kaiser Hemholtz-Institut für Strahlen- und Kernphysik der Uni Bonn supported by.
Calibration of the new Particle Identification Detector (PID) Tom Jude, Derek Glazier, Dan Watts.
Hadron physics Hadron physics Challenges and Achievements Mikhail Bashkanov University of Edinburgh UK Nuclear Physics Summer School I.
LOGO The η -mass measurement with the Crystal Ball at MAMI A. Nikolaev for the Crystal MAMI and A2 Collaborations Helmholtz Institut für Strahlen-
Probe resolution (GeV) N π,  Q 2 =12 GeV 2 Q 2 =6 GeV 2 The study of nucleon resonance transitions provides a testing ground for our understanding.
Exclusive π 0 electroproduction in the resonance region. Nikolay Markov, Maurizio Ungaro, Kyungseon Joo University of Connecticut Hadron spectroscopy meeting.
V.L. Kashevarov. Crystal Collaboration Meeting, Mainz, September 2008 Photoproduction of    on protons ► Introduction ► Data analysis.
Mitglied der Helmholtz-Gemeinschaft TSU TBILISI STATE UNIVERSITY The pn-system Study at Internal ANKE Experiment HEPI, Tbilisi State University IKP, Forschungszentrum.
Baryon Spectroscopy: Recent Results and Impact – , Erice R. Beck HISKP, University of Bonn Introduction Impact of the new Polarization.
Magnetic moments of baryon resonances Teilprojekt A3 Volker Metag II. Physikalisches Institut Universität Giessen Germany SFB/TR16 Mitgliederversammlung.
The A2 recoil nucleon polarimeter  Daniel Watts University of Edinburgh, UK.
9 th Crystal Ball Meeting Basel October Andreas Thomas Transversely Polarized Target 1.-Possible Physics Experiments 2.-Frozen Spin Target 3.-Technical.
Deeply Virtual Compton Scattering on the neutron Malek MAZOUZ LPSC Grenoble EINN 2005September 23 rd 2005.
Sub-Nucleon Physics Programme Current Status & Outlook for Hadron Physics D G Ireland.
Recent progress in N* physics from Kaon photoproduction experiments at CLAS using polarization observabes. The Rutherford Centennial Conference on Nuclear.
May 17, 2006Sebastian Baunack, PAVI06 The Parity Violation A4 Experiment at forward and backward angles Strange Form Factors The Mainz A4 Experiment Result.
Dan Watts (Edinburgh), Igor Strakovsky (GWU) and the CLAS Collaboration Daria Sokhan New Measurement of Beam Asymmetry from Pion Photoproduction on the.
Shape of Hadrons Athens April 2006 Real Photon Experiments  M. Kotulla MAMI and LEGS magnetic dipole moment of the   
Higher order forward spin polarizabilities Barbara Pasquini Pavia U. and INFN Pavia Paolo Pedroni Dieter Drechsel Paolo Pedroni Dieter Drechsel INFN Pavia.
Beijing, Sept 2nd 2004 Rachele Di Salvo Beam asymmetry in meson photoproduction on deuteron targets at GRAAL MENU2004 Meson-Nucleon Physics and the Structure.
P( ,n      reaction measured with the Crystal Ball at MAMI Dan Watts, Derek Glazier University of Edinburgh Richard Codling, John Annand University.
Meson Photoproduction with Polarized Targets   production a)  0 at threshold b) Roper and P 11 (1710)   production a) S 11 -D 13 phase rotation.
A First Analysis of the 3 He Test Beamtime CB Meeting Mainz, March 9, 2010 Patricia Aguar Bartolomé Alexander Mushkarenkov.
HLAB meeting paper 2011/1/18 T.Gogami CLAS ( CEBAF Large Acceptance Spectrometer ) Clam shell is open.
Recoil Polarimetery in Meson Photoproduction Mark Sikora, Derek Glazier, Dan Watts I. Beam time summary II. Experimental Technique IV. Analysis -event.
17th Crystal Ball Meeting
Polarisation transfer in hyperon photoproduction near threshold Tom Jude D I Glazier, D P Watts The University of Edinburgh.
Georgie Mbianda 1 for the Baryon (E01-002) Collaboration 1 University of the Witwatersrand, Johannesburg Exclusive Electroproduction of π + and η mesons.
Simultaneous photo-production measurement of the  and  mesons on the nucleons at the range 680 – 1500 MeV N.Rudnev, V.Nedorezov, A.Turinge for the GRAAL.
Overview of recent photon beam runs at CLAS CLAS12 European Workshop, Feb , Genoa, Italy Ken Livingston, University of Glasgow Tagged photons.
Analysis of    production ► Data taking ► Reaction identification ► Results for double polarization observable F ► Summary Based on data taken in the.
Fabien Zehr Double π photoproduction Glasgow 28 March 2006 Double π photoproduction at threshold and in the second resonance region With Crystal Ball and.
Timelike Compton Scattering at JLab
Measurement of helicity dependent total inclusive γ-3He cross section and the GDH sum rule on the neutron Susanna Costanza (INFN Pavia) on behalf of the.
A compact pair polarimeter and spectrometer
David Mchedlishvili for the ANKE collaboration
Precision Measurement of the Electroproduction of p0 Near Threshold:
Experimental Setup e- TAPS Crystal Ball  Tagged-Photon Spectrometer
Search For Pentaquark Q+ At HERMES
National Taiwan University
Mainz: Drechsel, Tiator Taipei: Guan Yeu Chen, SNY
Precision Measurement of η Radiative Decay Width via Primakoff Effect
Investigation of the h -Dalitz Decay with MAMI &
Progress on J-PARC hadron physics in 2016
Photoproduction of poh pairs on the proton
ACCELERATORS AND DETECTORS
Helicity dependence of g n ® Nπ(π) and the GDH integral on the neutrom
Status of Recoil Polarimeter
Proposal for an Experiment: Photoproduction of Neutral Kaons on Deuterium Spokespersons: D. M. Manley (Kent State University) W. J. Briscoe (The George.
Presentation transcript:

Transversal Target Asymmetries in Threshold p0 Photoproduction Peter-Bernd Otte, Annual SFB School Boppard, October 2014

Photoinduced Reactions on Protons Introduction Photoinduced Reactions on Protons Produktion verstehen von \gamma p  X oder \pi+ oder \pi0:  Meine Analyse: „Bereich der Schwelle ganz genau untersuchen“ MAMI geht bis sqrt(s) = 2,09 GeV, d.h. alles wird abgedeckt. s = 2*m_p+E_g+m_p**2 Schwelle bei (ein- und auslaufendes Proton hat Impuls = 0): 2E_Schwelle*m_p = m_pi^2 + 2*m_p*m_pi Ethr = 145MeV (Eg) MAMI energy range

Pion Photoproduction Introduction S- und P-wave multipole amplitudes Models: large differences, although they all describe the existing (published) data Determination of multipole amplitudes  model independent

Mainz Microtron 1) Experimental Setup cw electron accelerator sources: 100% duty factor sources: unpol.: Imax = 100µA pol.: Imax = 20µA with Pe≈80% MAMI-B/C: 180-883MeV DE = 13keV 900-1604MeV DE = 110keV RTM = Race Track Mikrotron (Mehrfaches Durchlaufen einer Beschleunigungseinheit) HDSM = Harmonic double sided Mikrotron MAMI C seit 2006

Photon beam 1) Experimental Setup Photon tagging spectrometer („Glasgow-Mainz-Tagger“): e- Bremsstrahlung momentum determination of scattered e- Eg = E0-Ee coverage: 7..93% E0 DE ≈ 1MeV (@E0=450MeV) flux: 4*105 g/s/MeV Polarised photons e- long. pol.  circ. pol. Crystal  lin. pol. Helicity transfer e- -> g Rückstoß auf Atomkern vernachlässigbar. lin. pol. e-: 100µm Diamant electrons E0 g beam

Target Cell 1) Experimental Setup Target cell Butanol C4H9OH 2 cm long and 2 cm diameter or Carbon foam / LH2 Rückstoß auf Atomkern vernachlässigbar. lin. pol. e-: 100µm Diamant electrons E0 g beam

Detector System 1) Experimental Setup Target cell Butanol C4H9OH 4π photon spectrometer (n and charged particles as well) Target cell Butanol C4H9OH 2 cm long and 2 cm diameter or Carbon foam / LH2 g beam

Detector System 1) Experimental Setup Particle ID (DE/E) 4π photon spectrometer (n and charged particles as well) Particle ID (DE/E) with thin plastic scintilators 20°<q<160° : barrel of 24x 2°<q<20° : 384x g beam

Detector System 1) Experimental Setup optional: Threshold C Detector 4π photon spectrometer (n and charged particles as well) optional: Threshold C Detector MWPC 2 cylindrical chambers charged particles only g beam

Detector System 1) Experimental Setup TAPS 366 BaF2 crystals (PMTs) 4π photon spectrometer (n and charged particles as well) TAPS 366 BaF2 crystals (PMTs) 12 radiation lengths 1°<q<20° (3%) self triggering Crystal Ball 672 NaI(Tl) crystals (PMTs) 16 radiation lengths 20°<q<160° (94%) s ≈ 2-3° self triggering g beam

1) Experimental Setup Detector System photons TAPS CB

Target: Mainz-Dubna Pol. Frozen Spin Target 1) Experimental Setup Target: Mainz-Dubna Pol. Frozen Spin Target Target: See talk J. Linturi tomorrow! „Dynamic Nucleon Polarisation“ polarise free electrons (radical) transfer pol. to protons P0 ≈ 90% (only H), P=P0e-t/t 3He/4He dilution cryostat T = 26mK & B = 0.44T for t≈2*10³h H spin: transversal or longitudinal super conducting saddle coil DNP: Dynamic Nucleon Polarisation („70GHz Mikrowellen System“): Electrons polarised by microwaves and transfer their polarisation to the protons. Polarising field B = 2.5 T spin of nuclei = 0 background = quasi free and coherent \pi0 production

Target Material 1) Experimental Setup Unpolarised Polarisable Material unpol. liquid Hydrogen (lH2) @ low T: parahydrogen (spins: ) not polarisable Polarisable Material Butanol (advantages: DNP, high P, large t, radiation hard, large d, high f) only H polarised unpol. BG I(12C) = I(16O) = 0 DNP: Dynamic Nucleon Polarisation („70GHz Mikrowellen System“): Electrons polarised by microwaves and transfer their polarisation to the protons. Polarising field B = 2.5 T spin of nuclei = 0 background = quasi free and coherent \pi0 production

Butanol Target: important properties 1) Experimental Setup Butanol Target: important properties Dilution Factor Filling Factor not trivial! Best mess. method: melting  f=60(3)% for butanol butanol balls Effective d(q,E) necessary Mandatory: decent statistics  Does not work in threshold region

Photoinduced Reactions on Protons 2) Photo p Production Photoinduced Reactions on Protons D region 2nd and 3rd resonant region threshold Produktion verstehen von \gamma p  X oder \pi+ oder \pi0:  Meine Analyse: „Bereich der Schwelle ganz genau untersuchen“ MAMI geht bis sqrt(s) = 2,09 GeV, d.h. alles wird abgedeckt. s = 2*m_p+E_g+m_p**2 Schwelle bei (ein- und auslaufendes Proton hat Impuls = 0): 2E_Schwelle*m_p = m_pi^2 + 2*m_p*m_pi Für die 2. und 3. Resonanz-Region werden bis hin zu F-Wellen von Relevanz. Ethr = 145MeV (Eg) MAMI energy range

Amplitudes in Pion Photo Production 2) Photo p Production Amplitudes in Pion Photo Production Spin observables Oi (q, W) Legendre expansion up to Lmax Legendre coefficients Aik bilinear combinations of multipoles, e.g.: Omelaenko (1981): 5 observables necessary for complete experiment Talk from Y. Wunderlich tomorrow

Threshold p0 production 2) Photo p Production Threshold p0 production Beam / Target Polarisation: In threshold region (Eg=144-180MeV): PWA (L=1): only S- and P-wave amplitudes E0+ & M1+, M1-, E1+ near threshold assumption: E0+ complex, all other real but Im(E0+) is fixed by Fermi Watson theorem (unitarity): necessary: determine 4 real numbers from experiment independent. meas. of Im(E0+) requires add. observable  “complete data base” E0+ etc. are multipoles \beta = cusp parameter, real value around 3 a = exchange scattering length Q = Pion momentum

p0 threshold production 2) Photo p Production p0 threshold production 2001: First measurements with TAPS (A. Schmidt et al., PRL2001, 87.232501) lin. pol. photons unpol. H target s0, but only one S point Physical Review Letters expand Observable in a cos(\theta) series for energy-angle separation direct access to real part / imaginary part of E0+ also possible in treshold region: test dominance at D-Waves with F

p0 threshold production 2) Photo p Production p0 threshold production 2001: First measurements with TAPS (A. Schmidt et al., PRL2001, 87.232501) lin. pol. photons unpol. H target s0, but only one S point 2008: high precision measurement s0, S with CB/TAPS (D. Hornidge et al., PRL2013, 111.062004)  Re(E0+, M1+, M1-, E1+) example: Physical Review Letters expand Observable in a cos(\theta) series for energy-angle separation direct access to real part / imaginary part of E0+ also possible in treshold region: test dominance at D-Waves with F

P-Waves Amplitudes 2) Photo p Production deviations for large E  D res. Messung stimmt überall gut mit der Theorie überein! Geringer stat. Fehler Lediglich für große E stimmt die Näherung für M1+ nicht mehr, da hier die Ausläufer der Delta-Res. greifen.

S wave amplitude 2) Photo p Production direct measurement via: Fermi Watson theorem or measurement (p+n thr.) Direkte Messung von ImE0+ ab \pi+ Schwelle unitarity cusp

Threshold p production 2) Photo p Production Threshold p production add measurement with unpol. photons & trans. pol. target: (2010, 2011) Measurement of with T  b and known E0+ Direct measurement of Im(E0+) Check consistency with S measurements (2008) Physics Review Letters Ladungsaustausch messbar expand Observable in a cos(\theta) series for energy-angle separation direct access to real part / imaginary part of E0+ also possible in treshold region: test dominance at D-Waves with F ?  Test strong isospin breaking

Analysis: Definitions 2) Photo p Production Analysis: Definitions Relevant: Determination of Obs.: asymmetry Event by event selection into 2 bins: „+“ and „-“ for T: for F: p spin (incoming) p0 g Was ist der T? „Target Asymmetrie“  Wie wird T gemessen? Erklären! Wechsel von pT (10-5Hz) nicht zwingend notwendig, nur zur Reduktion von falschen Asymmetrien durch eine unterschiedliche Detektor-Akzeptanz (T & F gleichzeitig bestimmbar) p for T’: Physical results <>0 expected =0 expected

Analysis: 3 Methods 2) Photo p Production Objective: get T of pure pol. hydrogen Diluted asymmetry on butanol target: Methods: determine (works only >220MeV) denominator  normalise with simulation & f denominator  normalise with unpol. Measurement & f “Ingredients:” butanol + carbon meas. butanol + simulation butanol + hydrogen Dilution Factor: Fermi motion and FSI  need for eff. Dilution factor  Same results expected…

Analysis details 3) Results Butanol Signal missing mass /MeV 2g  p0 reconstruction (no problem) proton detection (problematic, does not emerge the target)  Technique: Missing Mass (half of the total data set, all energies and q) Signal Um zu zeigen, dass die Analyse die Reaktion identifizieren kann. Kombinatorischer Untergrund bei der 2g-Masse zu sehen. missing mass /MeV

Photoinduced Reactions on Protons: Measured 3) Results Photoinduced Reactions on Protons: Measured Threshold & D region 2nd and 3rd resonant region Produktion verstehen von \gamma p  X oder \pi+ oder \pi0:  Meine Analyse: „Bereich der Schwelle ganz genau untersuchen“ MAMI geht bis sqrt(s) = 2,09 GeV, d.h. alles wird abgedeckt. s = 2*m_p+E_g+m_p**2 Schwelle bei (ein- und auslaufendes Proton hat Impuls = 0): 2E_Schwelle*m_p = m_pi^2 + 2*m_p*m_pi S. Schumann P. Barrientos P. Otte Analysis by: V. Kashevarov MAMI energy range

Status & Results for T and F Black = But/Sim red = But/H green = But/C Blue = MAID All analyses completed possible overview via Legendre Polynoms F @ 330MeV T @ 330MeV 𝐴⋅𝜎=𝜌⋅sin⁡(𝜃) 𝑝 0 + 𝑝 1 cos 𝜃 + 𝑝 2 3 cos 2 𝜃 −1 2 +…

Systematic uncertainties 3) Results Systematic uncertainties Sources, O(~%) different analysis techniques (e.g. carbon subtraction) Helicity dep. photon flux (A=0,005) Detector asymmetries Goodness of detectors maintenance butanol target, contribution of I=1/2 atoms C13 (1,1%) and O17 isotopes. F4 in container (He3 for cooling) limits resolution future investigations Hierzu beantworte ich gerne am Ende Fragen.

3) Results Systematic Errors ssys(T) = global Difference between analyses T’ ssys(F) = global Difference between analyses DA(beam flux) % Error in g flux (tagger poblems) 3,0 Unstable detectors and electronics f 2,0 (?) P(target) 2,0 P(beam) 2,7 total global sys. Error (indep. of q, E) 5,1 (T) 5,8 (F) depends on q, E

Thank you Summary / Outlook 4) Outlook Goal: model independent PWA from threshold up to W=2GeV Using techniques from Stahov?  talk tomorrow Measured & analysed Pion photoproduction: S, T, F Actual work in group measurements with “n” longitudinal pol.: G, E (in analysis) ditto: other channels Ideal: remeasure T with all improvements we learned Thank you More channels like \eta 2\pi_0 werden untersucht