The beginning of extra-galactic neutrino astronomy: What have we learned from IceCube’s neutrinos? E. Waxman Weizmann Institute arXiv:1312.0558 arXiv:1311.0287.

Slides:



Advertisements
Similar presentations
UHECRs & GRBs Eli Waxman Weizmann Institute, ISRAEL.
Advertisements

Many different acceleration mechanisms: Fermi 1, Fermi 2, shear,... (Fermi acceleration at shock: most standard, nice powerlaw, few free parameters) main.
The National Science FoundationThe Kavli Foundation APS April 2008 Meeting - St. Louis, Missouri Results from Cosmic-Ray Experiments Vasiliki Pavlidou.
Neutrinos as probes of ultra-high energy astrophysical phenomena Jenni Adams, University of Canterbury, New Zealand.
GZK Horizons and the Recent Pierre Auger Result on the Anisotropy of Highest-energy Cosmic Ray Sources Chia-Chun Lu Institute of Physics, National Chiao-Tung.
Ultrahigh Energy Cosmic Ray Nuclei and Neutrinos
An update on the High Energy End of the Cosmic Ray spectra M. Ave.
Cosmic rays at the ankle vs GZK … … heavy composition vs anisotropies Cosmic rays at the ankle vs GZK … … heavy composition vs anisotropies Martin Lemoine.
ANITA Meeting UC Irvine 23 November 2002 EHE Cosmic Rays, EHE Neutrinos and GeV- TeV Gamma rays David Kieda University of Utah Department of Physics.
High energy cosmic rays & neutrino astronomy Eli Waxman Weizmann Institute.
Multi-Messenger Astronomy with GLAST and IceCube Kyler Kuehn, UC-Irvine UCLA GLAST Workshop May 22, 2007.
07/05/2003 Valencia1 The Ultra-High Energy Cosmic Rays Introduction Data Acceleration and propagation Numerical Simulations (Results) Conclusions Isola.
What do we know about the identity of CR sources? Boaz Katz, Kfir Blum Eli Waxman Weizmann Institute, ISRAEL.
High energy neutrino astronomy: Challenges & Prospects Eli Waxman Weizmann Institute, ISRAEL.
High-energy emission from the tidal disruption of stars by massive black holes Xiang-Yu Wang Nanjing University, China Collaborators: K. S. Cheng(HKU),
Neutrinos from gamma-ray bursts, and tests of the cosmic ray paradigm TeVPA 2012 TIFR Mumbai, India Dec 10-14, 2012 Walter Winter Universität Würzburg.
Accelerators in the KEK, Tsukuba Mar. 14, Towards unravelling the structural distribution of ultra-high-energy cosmic ray sources Hajime.
Alexander Kappes UW-Madison 4 th TeVPA Workshop, Beijing (China) Sep. 24 – 28, 2008 The Hunt for the Sources of the Galactic Cosmic Rays — A multi-messenger.
10 18 eV Neutrinos associated with UHECR (>10 19 eV) sources Zhuo Li ( 黎卓 ) Peking University, Beijing Collaborators: Eli Waxman & Liming Song Li & Waxman,
La nascita della astronomia dei raggi cosmici? Indicazioni dall' Osservatorio P. Auger Aurelio F. Grillo Teramo 8/05/08.
Detecting GRB ν’s – an Opportunity For Observing Lorentz Invariance Violation Uri Jacob and Tsvi Piran The Hebrew University Jerusalem, Israel ν γ.
LBL November 3, 2003 selection & comments 14 June 2004 Thomas K. Gaisser Anatomy of the Cosmic-ray Energy Spectrum from the knee to the ankle.
IceCube non-detection of GRB Neutrinos: Constraints on the fireball properties Xiang-Yu Wang Nanjing University, China Collaborators : H. N. He, R. Y.
SEARCHING FOR A DIFFUSE FLUX OF ULTRA HIGH-ENERGY EXTRATERRESTRIAL NEUTRINOS WITH ICECUBE Henrik Johansson, for the IceCube collaboration LLWI H.
8 th Jan, NuHoRIzons, HRI, Allahabad Atsushi Watanabe (Harish-Chandra Research Institute) In collaboration with Raj Gandhi (HRI) Abhijit Samanta.
C Alexander Kappes for the IceCube Collaboration 23 rd European Cosmic-Ray Symposium Moscow, 7. July 2012 Neutrino astronomy with the IceCube Observatory.
Astrophysics of high energy cosmic-rays Eli Waxman Weizmann Institute, ISRAEL “New Physics”: talk by M. Drees Bhattacharjee & Sigl 2000.
Hajime Takami Institute for the Physics and Mathematics of the Universe, the University of Tokyo High Energy Astrophysics KEK, Tsukuba, Nov. 11,
Ultra High Energy Cosmic Rays -- Origin and Propagation of UHECRs -- M.Teshima Max-Planck-Institut f ü r Physik, M ü nchen Erice Summer School July
Humberto Salazar (FCFM-BUAP) for the Pierre Auger Collaboration, CTEQ- Fermilab School Lima, Peru, August 2012 Ultrahigh Cosmic Rays: The highest energy.
Paul Sommers Fermilab PAC Nov 12, 2009 Auger Science South and North.
High Energy Cosmic Rays Eli Waxman Weizmann Institute, ISRAEL.
Active Galactic Nuclei & High Energy Neutrino Astronomy 黎卓 北京大学 >TeV JUNO Workshop, IHEP, 2015/7/10.
Neutrinos from gamma-ray bursts, and tests of the cosmic ray paradigm GGI seminar Florence, Italy July 2, 2012 Walter Winter Universität Würzburg TexPoint.
April 23, 2009PS638 Tom Gaisser 1 Neutrinos from AGN & GRB Expectations for a km 3 detector.
L EPTONIC NEUTRINOS Arunava Bhadra High Energy & Cosmic Ray Research Ctr. North Bengal University My collaborators: Prabir Banik and Biplab Bijay.
1 NATURE OF KNEES AND ANKLE V.S. Berezinsky INFN, Laboratori Nazionali del Gran Sasso.
SN 1987A as a Possible Source of Cosmic Rays with E 0 < eV by Yakutsk EAS Array Data A.V. Glushkov, L.T. Ksenofontov, M.I. Pravdin Yu.G. Shafer Institute.
MA4: HIGH-ENERGY ASTROPHYSICS Critical situation of manpower : 1 person! Only «free research» based in OAT. Big collaborations based elsewhere (Fermi,
The origin of Cosmic Rays: New developments and old puzzles K. Blum*, B. Katz*, A. Spector, E. Waxman Weizmann Institute *currently at IAS, Princeton.
What do we learn from the recent cosmic-ray positron measurements? arXiv: [MNRAS 405, 1458] arXiv: K. Blum*, B. Katz*, E. Waxman Weizmann.
260404Astroparticle Physics1 Astroparticle Physics Key Issues Jan Kuijpers Dep. of Astrophysics/ HEFIN University of Nijmegen.
Newly Born Pulsars as Sources of High and Ultrahigh Energy Cosmic Rays Ke Fang University of Chicago ISCRA - Jul 9, KF, Kotera, Olinto 2012, ApJ,
Gamma-ray Bursts and Particle Acceleration Katsuaki Asano (Tokyo Institute of Technology) S.Inoue ( NAOJ ), P.Meszaros ( PSU )
Examples of Science Generic fluxes associated with cosmic rays Generic fluxes associated with cosmic rays Astrophysics: gamma ray bursts Astrophysics:
PHY418 Particle Astrophysics
Astroparticle physics with large neutrino detectors  Existing detectors  Physics motivation  Antares project  KM3NeT proposal M. de Jong.
High energy astronomy and Gamma-ray bursts Eli Waxman Weizmann Institute, ISRAEL.
52° Congresso SAIt 2008 Raffaella Bonino* for the Pierre Auger Collaboration ( * ) IFSI – INFN – Università di Torino.
Propagation and Composition of Ultra High Energy Cosmic Rays
A search for neutrinos from long-duration GRBs with the ANTARES underwater neutrino telescope arxiv C.W. James for the ANTARES collaboration.
The case for High energy neutrino astronomy Eli Waxman Weizmann Institute, ISRAEL.
March 22, 2005Icecube Collaboration Meeting, LBL How guaranteed are GZK ’s ? How guaranteed are GZK ’s ? Carlos Pena Garay IAS, Princeton ~
L. CazónHadron-Hadron & Cosmic-Rays interactions at multi-TeV energies. Trento,2-Dez Results from the Pierre Auger Observatory L. Cazon, for the.
Prospects of Identifying the Sources of the Galactic Cosmic Rays with IceCube Alexander Kappes Francis Halzen Aongus O’Murchadha University Wisconsin-Madison.
Ultra High Energy Cosmic Rays: The disappointing model Askhat Gazizov LNGS, INFN, Italy in collaboration with Roberto Aloisio and Veniamin Berezinsky April.
IceCube’s neutrinos: What we have learned E. Waxman Weizmann Institute.
UHE Cosmic Rays from Local GRBs Armen Atoyan (U.Montreal) collaboration: Charles Dermer (NRL) Stuart Wick (NRL, SMU) Physics at the End of Galactic Cosmic.
High energy & Gravitational wave detectors: New windows on the universe Eli Waxman Weizmann Institute, ISRAEL.
Shih-Hao Wang 王士豪 Graduate Institute of Astrophysics & Leung Center for Cosmology and Particle Astrophysics (LeCosPA), National Taiwan University 1 This.
NuSky 20-June-2011Tom Gaisser1 Cosmic-ray spectrum and composition --Implications for neutrinos and vice versa.
Counterparts to Single Neutrinos
The origin of Cosmic Rays: New developments and old puzzles
Recent Results of Point Source Searches with the IceCube Neutrino Telescope Lake Louise Winter Institute 2009 Erik Strahler University of Wisconsin-Madison.
Theoretical status of high energy cosmic rays and neutrinos
Neutrinos as probes of ultra-high energy astrophysical phenomena
Cosmic rays, γ and ν in star-forming galaxies
Predictions of Ultra - High Energy Neutrino fluxes
Shigeru Yoshida and Aya Ishihara
A. Uryson Lebedev Physical Institute RAS, Moscow
Presentation transcript:

The beginning of extra-galactic neutrino astronomy: What have we learned from IceCube’s neutrinos? E. Waxman Weizmann Institute arXiv: arXiv: J. Bahcall, “Neutrino Astronomy” (1989): “The title is more of an expression of hope than a description of the book’s content…”

Cosmic-ray accelerators: What have we learned from IceCube’s neutrinos? E. Waxman Weizmann Institute arXiv: arXiv:

The main driver of HE astronomy: The origin of CRs Cosmic-ray E [GeV] log [dJ/dE] E -2.7 E -3 Heavy Nuclei Protons Light Nuclei? Galactic UHE X-Galactic Source: Supernovae(?) Source? Lighter Where is the G/XG transition?

Consider the rate of CR energy production at UHE, >10 10 GeV; Intermediate E, PeV; “Low” E, ~10 GeV.

UHE: Composition HiRes 2005 Auger 2010 HiRes 2010 (& TA 2011) [Wilk & Wlodarczyk 10]* [*Possible acceptable solution?, Auger collaboration 13]

UHE: Energy production rate & spectrum Protons dQ/d log  =Const.  =0.5(+-0.2) x erg/Mpc 3 yr Mixed composition ct eff [Mpc] log(dQ/d log  ) [erg/Mpc 3 yr] [Katz & EW 09] [Allard 12] GZK

Collisionless shock acceleration The only predictive model. No complete basic principles theory, but - Test particle + elastic scattering assumptions gives v/c<<1: dQ/d log  =Const., v/c~1: dQ/d log  =Const.x  -2/9 (  >>1, isotropic scattering), - Supported by basic principles plasma simulations, - dQ/d log  =Const Observed in a wide range of sources (lower energy p’s in the Galaxy, radiation emission from accelerated e - ). [Krimsky 77] [Keshet & EW 05] [Spitkovsky 06, Sironi & Spitkovsky 09, Keshet et al. 09, …] 200c/  p 40c/  p

Intermediate energy: Neutrinos p +   N +   0  2  ;  +  e + + e +  +   Identify UHECR sources Study BH accretion/acceleration physics For all known sources,   p <=1: If X-G p ’ s:  Identify primaries, determine f(z) [EW & Bahcall 99; Bahcall & EW 01] [Berezinsky & Zatsepin 69]

BBR05 “Hidden” ( only) sources Violating UHECR bound

Bound implications: >1Gton detector 2 flavors, Fermi

   =( )x10 -8 GeV/cm 2 sr s =    WB = 3.4x10 -8 GeV/cm 2 sr s Consistent with Isotropy and with e :  :  =1:1:1 (  deacy + cosmological prop.). IceCube: 37 events at 50Tev-2PeV ~6  above atmo. bgnd. [02Sep14 PRL] A new era in astronomy

IceCube’s detection: Implications Unlikely Galactic: Isotropy, and  2   ~10 -7 (E 0.1TeV ) -0.7 GeV/cm 2 s sr [Fermi]   2  ~10 -9 (E 0.1PeV ) -0.7 GeV/cm 2 s sr <<  WB DM decay? The coincidence of 50TeV<E<2PeV flux, spectrum (& flavor) with the WB bound is unlikely a chance coincidence. XG distribution of sources, (dQ/d log  ) PeV-EeV ~  (dQ/d log  ) >10EeV,   p(pp) >~1 [“Calorimeters”]  Or  (dQ/d log  ) PeV-EeV >>  (dQ/d log  ) >10EeV,   p(pp) <<1  & Coincidence over a wide energy range. (dQ/d log  ) ~  0 implies: p, G-XG transition at ~10 19 eV.

Candidate CR calorimeters: Starburst galaxies Candidate UHECR sources are NOT expected to be “calorimeters” for <100PeV p’s [e.g. Murase et al. 2014]. Radio, IR &  -ray (GeV-TeV) observations  Starbursts are calorimeters for E/Z reaching (at least) 10PeV. Most of the stars in the universe were formed in Starbursts. If CR sources reside in galaxies and Q~Star Formation Rate (SFR), Then  (  <1PeV)~  WB. (And also a significant fraction of the  -bgnd, see Irene’s talk). [Loeb & EW 06]

Low Energy, ~10GeV Our Galaxy- using “grammage” Starbursts- using radio to  observations  Q/SFR similar for different galaxy types, dQ/dlog  ~Const. at all  ! [Katz, EW, Thompson & Loeb 14]

The cosmic ray spectrum [From Helder et al., SSR 12]

The cosmic ray generation spectrum XG CRs XG ’s MW CRs, Starbursts (+ CRs~SFR) [Katz, EW, Thompson & Loeb 14] A single source?

Electromagnetic acceleration in astrophysical sources requires L> L Sun (  2 /  ) (  /Z eV) 2 erg/s GRB: L Sun, M BH ~1M sun, M~1M sun /s,  ~ AGN: L Sun, M BH ~10 9 M sun, M~1M sun /yr,  ~10 1 No steady sources at d<d GZK  Transient Sources (AGN flares?), Charged CRs delayed compared to  ’s. Source candidates & physics challenges Energy extraction; Jet acceleration and content (kinetic/Poynting) Particle acceleration, Radiation mechanisms [Lovelace 76; EW 95, 04; Norman et al. 95]

Identifying the sources IC’s ’s are produced by the “calorimeters” surrounding the sources.  ~1deg  Identification by angular distribution impossible. Our only hope: Identification of transient sources by temporal  association. Requires: Wide field EM monitoring, Real time alerts for follow-up of high E events, and Significant increase of the detector mass at ~100TeV  (source) may be <<  (calorimeter)~  WB [ e.g.  (GRB) ~0.1  WB ] ].

What will we learn from  associations? Identify the CR sources. Resolve key open Qs in the accelerators’ physics (BH jets, particle acceleration, collisionless shocks). Study fundamental/ physics: -  decay  e :  :  = 1:2:0 (Osc.)  e :  :  = 1:1:1    appearance, - GRBs: -  timing (10s over Hubble distance)  LI to 1:10 16 ; WEP to 1:10 6. Optimistically (>100’s of ’ s with flavor identification): Constrain  CP, new phys. [Learned & Pakvasa 95; EW & Bahcall 97] [EW & Bahcall 97; Amelino-Camelia,et al.98; Coleman &.Glashow 99; Jacob & Piran 07] [Blum, Nir & EW 05; Winter 10; Pakvasa 10; … Ng & Beacom 14; Ioka & Murase 14; Ibe & Kaneta 14; Blum, Hook & Murase 14]

Summary IceCube detects extra-Galactic ’s.  =  WB at 50TeV-2PeV. Flux & spectrum of ~10 10 GeV CRs, ~1PeV (and ~10 GeV CRs) Consistent with CR p sources in galaxies, dQ/dlog  ~Const., Q~SFR. * IceCube’s detection consistent with the predicted  (  <1PeV)~  WB from sources residing in starbursts. [A flurry of models post-dicting IceCube’s results by arbitrarily choosing model parameters to match the flux.] * A single type of sources? The sources are unknown. * UHE: L>10 47(50) erg/s, GRBs or bright (to be detected) AGN flares. Temporal  association is key to: CR sources identification, Cosmic accelerators’ physics, Fundamental/ physics.

What is required for the next stage of the astronomy revolution The number of events provided by IceCube E>1 PeV, E>0.1PeV) will not be sufficient for an accurate determination of spectrum, flavor ratio and (an)isotropy.   telescopes M eff (100TeV) expansion to ~10Gton  (IceCube, Km3Net). Wide field EM monitoring. Adequate sensitivity for detecting the ~10 10 GeV GZK ’s.

Backup Slides

UHE, >10 10 GeV, CRs 3,000 km 2 J(>10 11 GeV)~1 / 100 km 2 year 2  sr Ground array Fluorescence detector Auger: 3000 km 2

Where is the G-XG E<10 18 eV ? Fine tuning Inconsistent with Fermi’s XG  (<1TeV) flux  2 (dQ/d  ) =Const E~10 19 eV [Katz & EW 09] [Gelmini 11]

UHE: Do we learn from (an)isotropy? Galaxy density integrated to 75Mpc CR intensity map (  source ~  gal ) [EW, Fisher & Piran 97] Biased (  source ~  gal for  gal >  gal ) [Kashti & EW 08] 98% CL; Consistent with LSS Anisotropy of Z at eV implies Stronger aniso. signal (due to p) at ( /Z) eV Not observed  No high Z at eV [Kotera & Lemoine 08; Abraham et al. 08… Oikonomou et al. 13] [Lemoine & EW 09]

 production: p/A—p/   decay  e :  :  = 1:2:0 (propagation)  e :  :  = 1:1:1 p(A)-p:  /  p ~1/(2x3x4)~0.04 (  p   A /A); - IR photo dissociation of A does not modify  ; - Comparable particle/anti-particle content. p(A)-  :  /  p ~ (0.1—0.5)x(1/4)~0.05; - Requires intense radiation at   >A keV; - Comparable particle/anti-particle content,  e excess if dominated by  resonance (dlog n  /dlog   <-1). [Spector, EW & Loeb 14]

IceCube’s GRB limits [Hummer, Baerwald, and Winter 12; see also Li 12; He et al 12] No ’ s associated with ~200 GRBs (~2 expected). IC analyses overestimate GRB flux predictions, and ignore model uncertainties. IC is achieving relevant sensitivity. [EW & Bahcall 97]

Are SNRs the low E CR sources? So far, no clear evidence. Electromagnetic observations- ambiguous. E.g.: “  decay signature” [Ackermann et al. 13] :