Multithreading Allows application to split itself into multiple “threads” of execution (“threads of execution”). OS support for creating threads, terminating.

Slides:



Advertisements
Similar presentations
OPERATING SYSTEMS Threads
Advertisements

Chapter 4: Threads. 4.2 Silberschatz, Galvin and Gagne ©2005 AE4B33OSS Chapter 4: Threads Overview Multithreading Models Threading Issues Pthreads Windows.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition, Chapter 4: Multithreaded Programming.
Threads. Objectives To introduce the notion of a thread — a fundamental unit of CPU utilization that forms the basis of multithreaded computer systems.
Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8 th Edition Chapter 4: Threads.
Threads.
Chapter 5 Threads os5.
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 5: Threads Overview Multithreading Models Threading Issues Pthreads Solaris.
Chapter 4: Threads. Overview Multithreading Models Threading Issues Pthreads Windows XP Threads.
Chapter 4: Threads. 4.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts – 7 th edition, Jan 23, 2005 Chapter 4: Threads Overview Multithreading.
Chapter 4: Threads. 4.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts – 7 th edition, Jan 23, 2005 Chapter 4: Threads Overview Multithreading.
Chapter 4: Threads. 4.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts – 7 th edition, Jan 23, 2005 Chapter 4: Threads Overview Multithreading.
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 5: Threads Overview Multithreading Models Threading Issues Pthreads Solaris.
Based on Silberschatz, Galvin and Gagne  2009 Threads Definition and motivation Multithreading Models Threading Issues Examples.
Process Concept An operating system executes a variety of programs
Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8 th Edition Chapter 4: Threads.
Chapter 4: Threads READ 4.1 & 4.2 NOT RESPONSIBLE FOR 4.3 &
Chapter 4: Threads. 4.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts Chapter 4: Threads Overview Multithreading Models Threading Issues.
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 5: Threads Overview Multithreading Models Threading Issues Pthreads Solaris.
Chapter 51 Threads Chapter 5. 2 Process Characteristics  Concept of Process has two facets.  A Process is: A Unit of resource ownership:  a virtual.
Processes Part I Processes & Threads* *Referred to slides by Dr. Sanjeev Setia at George Mason University Chapter 3.
Chapter 4: Threads Adapted to COP4610 by Robert van Engelen.
14.1 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts with Java – 8 th Edition Chapter 4: Threads.
9/13/20151 Threads ICS 240: Operating Systems –William Albritton Information and Computer Sciences Department at Leeward Community College –Original slides.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition, Chapter 4: Threads.
Operating System Principles Ku-Yaw Chang Assistant Professor, Department of Computer Science and Information Engineering Da-Yeh.
Chapter 4: Threads. 4.2CSCI 380 Operating Systems Chapter 4: Threads Overview Multithreading Models Threading Issues Pthreads Windows XP Threads Linux.
1 Lecture 4: Threads Operating System Fall Contents Overview: Processes & Threads Benefits of Threads Thread State and Operations User Thread.
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 5: Threads Overview Multithreading Models Threading Issues Pthreads Solaris.
Copyright © 2006 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill Technology Education Lecture 4 Operating Systems.
Chapter 4: Threads. 4.2 Chapter 4: Threads Overview Multithreading Models Threading Issues Pthreads Windows XP Threads Linux Threads Java Threads.
14.1 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts with Java – 8 th Edition Chapter 4: Threads.
Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8 th Edition Chapter 4: Threads.
Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8 th Edition Chapter 4: Threads.
Unix Pipes Pipe sets up communication channel between two (related) processes. 37 Two processes connected by a pipe.
CHAPTER 5: THREADS ( 线程 ) Overview Overview Multithreading Models (多线程模型) Multithreading Models (多线程模型) Thread Implementation Issues (线程实现事项) Thread Implementation.
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 5: Threads Multithreading Models Threading Issues Pthreads Solaris 2 Threads.
Silberschatz, Galvin and Gagne  2002 Modified for CSCI 399, Royden, Operating System Concepts Operating Systems Lecture 13 Threads Read Ch 5.1.
Chapter 4: Threads. 4.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts – 7 th edition, Jan 23, 2005 Chapter 4: Threads Overview Multithreading.
Chapter 4: Threads. 4.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts Chapter 4: Threads Overview Multithreading Models Threading Issues.
Chapter 4: Threads. 2 Overview Multithreading Models Threading Issues Pthreads Windows XP Threads Linux Threads.
Overview Multithreading Models Threading Issues Pthreads Solaris 2 Threads Windows 2000 Threads Linux Threads Java Threads.
Lecture 5: Threads process as a unit of scheduling and a unit of resource allocation processes vs. threads what to program with threads why use threads.
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 5: Threads Overview Multithreading Models Threading Issues Pthreads Solaris.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Chapter 4: Threads Modified from the slides of the text book. TY, Sept 2010.
Chapter 4: Threads.
Chapter 4: Multithreaded Programming. 4.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts What is Thread “Thread is a part of a program.
Chapter 4: Threads. 4.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts – 7 th edition, Jan 23, 2005 Chapter 4: Threads Overview Multithreading.
Department of Computer Science and Software Engineering
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition, Chapter 4: Threads.
Operating System Concepts
Lecturer 3: Processes multithreaded Operating System Concepts Process Concept Process Scheduling Operation on Processes Cooperating Processes Interprocess.
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 5: Threads  Overview  Multithreading Models  Threading Issues  Pthreads.
Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8 th Edition Chapter 4: Threads.
1 Chapter 5: Threads Overview Multithreading Models & Issues Read Chapter 5 pages
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 5: Threads Overview Multithreading Models Threading Issues Pthreads Solaris.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition, Chapter 4: Threads.
Lecture 5. Example for periority The average waiting time : = 41/5= 8.2.
14.1 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts with Java – 8 th Edition Chapter 4: Multithreaded Programming.
Chapter 5: Threads Overview Multithreading Models Threading Issues
Chapter 5: Threads Overview Multithreading Models Threading Issues
Chapter 5: Threads Overview Multithreading Models Threading Issues
Chapter 5: Threads Overview Multithreading Models(多线程模型)
Chapter 5: Threads Overview Multithreading Models Threading Issues
Chapter 4: Threads.
Chapter 4: Threads.
Chapter 4: Threads.
Chapter 5: Threads Overview Multithreading Models Threading Issues
Chapter 4: Threads.
Chapter 4: Threads.
Presentation transcript:

Multithreading Allows application to split itself into multiple “threads” of execution (“threads of execution”). OS support for creating threads, terminating threads, and preemptively switches control among (kernel- level) threads. A thread is simply a function that can call other functions.

Multithreading Threads are part of same process and share all process resources: Memory Open Files Global Variables Static Variables Each thread has its own: processor (and math coprocessor) state stack

Single and Multithreaded Processes

Lightweight process. Threads share all process resources. State: Thread ID, program counter, register set, and stack. User-level threads and kernel-level threads.

Benefits Performance: Overlap communication/computation Responsiveness: Separate thread to handle user input. Web server spawns separate thread to handle incoming request. Resource Sharing: e.g., one code, data segment. Economy: Much cheaper to create and switch than processes. Utilization of MP Architectures: Assign each thread to a separate processor if available.

User Threads Thread management done by user-level threads library. Advantages: Very fast: Does not involve kernel in creation, scheduling, or switching. Disadvantages: When a thread blocks, whole process blocks.

Kernel Threads Supported by the Kernel. Kernel creates, schedules, and switches threads. Advantage: When one thread blocks, the whole process does not have to block. Thus can overlap I/O and computation. Disadvantage: Slower since kernel is involved.

Multithreading Models Many-to-One One-to-One Many-to-Many

Many-to-One Many user-level threads mapped to single kernel thread. Used on systems that do not support kernel threads.

Many-to-One Model

One-to-One Each user-level thread maps to kernel thread. Examples - Windows 95/98/NT/ OS/2

One-to-one Model

Many-to-Many Model Allows many user level threads to be mapped to many kernel threads. Allows the operating system to create a sufficient number of kernel threads. Solaris 2 Windows NT/2000 with the ThreadFiber package

Many-to-Many Model

Pthreads a POSIX standard (IEEE c) API for thread creation and synchronization. API specifies behavior of the thread library, implementation is up to development of the library. Common in UNIX operating systems.

Solaris 2 Threads

Solaris Process

Windows 2000 Threads Implements the one-to-one mapping. Each thread contains - a thread id - register set - separate user and kernel stacks - private data storage area