Microwave Spectroscopy of Seven Conformers of 1,2-Propanediol Justin L. Neill, Matt T. Muckle, and Brooks H. Pate, Department of Chemistry, University.

Slides:



Advertisements
Similar presentations
Laboratory Spectrum of the trans-gauche Conformer of Ethyl Formate Justin L. Neill, Matt T. Muckle, Daniel P. Zaleski, Brooks H. Pate Department of Chemistry,
Advertisements

Microsolvation of  -propiolactone as revealed by Chirped-Pulse Fourier Transform Microwave Spectroscopy Justin L. Neill, Matt T. Muckle, Daniel P. Zaleski,
CHIRPED-PULSE FOURIER-TRANSFORM MICROWAVE SPECTROSCOPY OF THE PROTOTYPICAL C-H…π INTERACTION: THE BENZENE…ACETYLENE WEAKLY BOUND DIMER Nathan W. Ulrich,
IDENTIFICATION OF THE CAGE, PRISM, AND BOOK ISOMERS OF WATER HEXAMER AND THE PREDICTED LOWEST ENERGY HEPTAMER AND NONAMER CLUSTERS BY BROADBAND ROTATIONAL.
AUSTIN L. MCJUNKINS, K. MICHELLE THOMAS, APRIL RUTHVEN, AND GORDON G. BROWN Department of Science and Mathematics, Coker College, 300 E College Ave., Hartsville,
Techniques for High-Bandwidth (> 30 GHz) Chirped-Pulse Millimeter/Submillimeter Spectroscopy Justin L. Neill, Amanda L. Steber, Brent J. Harris, Brooks.
Development of a Reduced-Cost CP-FTMW Spectrometer Using Direct Digital Synthesis Ian Finneran Daniel Holland Brandon Carroll Geoffrey Blake California.
Gas Analysis by Fourier Transform Millimeter Wave Spectroscopy Brent J. Harris, Amanda L. Steber, Kevin K. Lehmann, and Brooks H. Pate Department of Chemistry.
Laboratory and Possible Interstellar Detection of trans-Methyl Formate MATT T. MUCKLE, JUSTIN L. NEILL, DANIEL P. ZALESKI, and BROOKS H. PATE University.
Jason J. Pajski, Matt Logan, Brian C. Dian 1, Gordon G. Brown, Kevin O. Douglass, Richard D. Suenram and Brooks H. Pate Department of Chemistry, University.
The Search is Over: Design and Applications of a Chirped Pulse Fourier Transform Microwave (CP- FTMW) Spectrometer for Ground State Rotational Spectroscopy.
Measurement of the Vibrational Population Distribution of Barium Sulfide, Seeded in an Argon Supersonic Expansion, Following Production Through the Reaction.
A Segmented Chirped-Pulse Fourier Transform Millimeter Wave Spectrometer ( GHz) with Real-time Signal Averaging Capability Brent J. Harris, Amanda.
High-speed ultrasensitive measurements of trace atmospheric species 250 spectra in 0.7 s David A. Long A. J. Fleisher, D. F. Plusquellic, J. T. Hodges.
Room-Temperature Chirped-Pulse Microwave Spectrum of 2-Methylfuran
Waveguide Chirped-Pulse FTMW Spectroscopy Steven T. Shipman, 1 Justin L. Neill, 1 Brett Kroncke, 1 Brooks H. Pate, 1 and P. Groner 2 1 University of Virginia.
DELIVERING MICROWAVE SPECTROSCOPY TO THE MASSES: A DESIGN OF A LOW-COST MICROWAVE SPECTROMETER OPERATING IN THE GHZ FREQUENCY RANGE Amanda L. Steber.
Construction of a 480 MHz Chirped-Pulse Fourier-Transform Microwave Spectrometer: The Rotational Spectra of Divinyl Silane and 3,3-Difluoropentane Daniel.
Chirped-pulsed FTMW Spectrum of 4-Fluorobenzyl Alcohol
Waveguide Chirped-Pulse Fourier Transform Microwave (CP-FTMW) Spectrum of Allyl Chloride Erin B. Kent, Morgan N. McCabe, Maria A. Phillips, Brittany P.
Chirped Pulse Fourier Transform Microwave Spectroscopy of SnCl Garry S. Grubbs II and Stephen A. Cooke Department of Chemistry, University of North Texas,
OSU – June – SGK1 STEVE KUKOLICH, ERIK MITCHELL ╬, SPENCER CAREY, MING SUN, AND BRYAN SARGUS, Dept. of Chemistry and Biochemistry, The University.
DANIEL P. ZALESKI, JUSTIN L. NEILL, MATT T. MUCKLE, AMANDA L. STEBER, RYAN A. LOOMIS, BRENT J. HARRIS, and BROOKS H. PATE Department of Chemistry, University.
Galen Sedo, Jane Curtis, Kenneth R. Leopold Department of Chemistry, University of Minnesota The Dipole Moment of the Sulfuric Acid Monomer.
Pure Rotational and Ultraviolet-Microwave Double Resonance Spectroscopy of Two Water Complexes of para-methoxyphenylethylamine (pMPEA) Justin L. Neill,
Two-Dimensional Chirped-Pulse Fourier Transform Microwave Spectroscopy Amanda Shirar June 22, th OSU International Symposium on Molecular Spectroscopy.
Chirped-Pulse Fourier Transform mm-Wave Spectroscopy from GHz Brent J. Harris, Amanda L. Steber, Justin L. Neill *, Brooks H. Pate University of.
Strategies for Complex Mixture Analysis in Broadband Microwave Spectroscopy Amanda L. Steber, Justin L. Neill, Matt T. Muckle, and Brooks H. Pate Department.
1 Broadband Chirped-Pulse Fourier- Transform Microwave (CP-FTMW) Spectroscopic Investigation of the Structures of Three Diethylsilane Conformers Amanda.
ULTRAVIOLET - CHIRPED PULSE FOURIER TRANSFORM MICROWAVE (UV-CPFTMW) DOUBLE-RESONANCE SPECTROSCOPY Brian C. Dian, Kevin O. Douglass, Gordon G. Brown, Jason.
Observation of the weakly bound (HCl) 2 H 2 O cluster by chirped-pulse FTMW spectroscopy Zbigniew Kisiel, a Alberto Lesarri, b Justin Neill, c Matt Muckle,
Gas Phase Conformational Distributions
DANIEL P. ZALESKI, JUSTIN L. NEILL, MATTHEW T. MUCKLE, AMANDA L. STEBER, NATHAN A. SEIFERT, AND BROOKS H. PATE Department of Chemistry, University of Virginia,
DANIEL P. ZALESKI, JUSTIN L. NEILL, AND BROOKS H. PATE Department of Chemistry, University of Virginia, McCormick Rd., P.O. Box , Charlottesville,
Microwave Spectrum of Hydrogen Bonded Hexafluoroisopropanol  water Complex Abhishek Shahi Prof. E. Arunan Group Department of Inorganic and Physical.
Spectral Simplification Methods Development Using Waveguide Chirped-Pulse Fourier Transform Microwave Spectroscopy Erin Kent, Steven Shipman New College.
The Low Frequency Broadband Fourier Transform Microwave Spectroscopy of Hexafluoropropylene Oxide, CF 3 CFOCF 2 Lu Kang 1, Steven T. Shipman 2, Justin.
OSU 06/18/08 Ultrabroadband Rotational Spectroscopy: Novel Applications of a Shape Sensitive Detector BRIAN C. DIAN Purdue University Department of Chemistry.
THE PURE ROTATIONAL SPECTRA OF THE TWO LOWEST ENERGY CONFORMERS OF n-BUTYL ETHYL ETHER. B. E. Long, G. S. Grubbs II, and S. A. Cooke RH13.
Novel Applications of a Shape Sensitive Detector 2: Double Resonance Amanda Shirar Purdue University Molecular Spectroscopy Symposium June 19, 2008.
Chirped-pulse, FTMW spectroscopy of the lactic acid-H 2 O system Zbigniew Kisiel, a Ewa Białkowska-Jaworska, a Daniel P. Zaleski, b Justin L. Neill, b.
Rotational Spectra and Structure of Phenylacetylene-Water Complex and Phenylacetylene-H 2 S (preliminary) Mausumi Goswami, L. Narasimhan, S. T. Manju and.
R. D. Suenram, Justin Lindsay Neill, Jason J. Pajski, Gordon G. Brown, Brooks H. Pate Department of Chemistry, University of Virginia, McCormick Rd., P.O.
Steven T. Shipman, 1 Justin L. Neill, 2 Matt T. Muckle, 2 Richard D. Suenram, 2 and Brooks H. Pate 2 Chirped-Pulse Fourier Transform Microwave Spectroscopy.
Microwave Studies of Glycerol F.J. Lovas, and D.F Plusquellic NIST and V.V. Ilyushin and R.A. Motiyenko Institute of Radio Astronomy of NASU.
The Pure Rotational Spectrum of Pivaloyl Chloride, (CH 3 ) 3 CCOCl, between 800 and MHz. Garry S. Grubbs II, Christopher T. Dewberry, Kerry C. Etchison,
Waveguide Chirped-Pulse Fourier Transform Microwave Spectroscopy of 2-Ethoxyethanol Maria A. Phillips, Steven Shipman New College of Florida.
High-Resolution Visible Spectroscopy of H 3 + Christopher P. Morong, Christopher F. Neese and Takeshi Oka Department of Chemistry, Department of Astronomy.
Amanda L. Steber, Brent J. Harris, Justin L. Neill, Kevin K. Lehmann, Brooks H. Pate Department of Chemistry, University of Virginia, McCormick Rd., P.O.
Molecular Stark Effect Measurements in Broadband Chirped-Pulse Fourier Transform Microwave (CP-FTMW) Spectrometers Leonardo Alvarez-Valtierra, 1 Steven.
Bri Gordon Steven T. Shipman New College of Florida
Effective C 2v Symmetry in the Dimethyl Ether–Acetylene Dimer Sean A. Peebles, Josh J. Newby, Michal M. Serafin, and Rebecca A. Peebles Department of Chemistry,
MW Spectroscopy of  -Alanine and a Search in Orion-KL Shiori Watanabe ( Kyoto Univ. JAPAN ), Satoshi Kubota, Kentarou Kawaguchi ( Okayama Univ. JAPAN.
The Rotational Spectrum of N-Acetyl Phenylalanine Methyl Ester Measured with a Medium Bandwidth (100 MHz) Chirped-Pulse Fourier Transform Microwave Spectrometer.
NEW INSTRUMENTAL TOOLS FOR ADVANCED ASTROCHEMICAL APPLICATIONS Amanda L. Steber 1,2, Sabrina Zinn 1,2, Anouk Rijs 3, and Melanie Schnell 1,2 1 The Centre.
Fast Sweeping Direct Absorption (sub)Millimeter Spectroscopy Based on Chirped Pulse Technology Brian Hays 1, Steve Shipman 2, Susanna Widicus Weaver 1.
Infrared--Microwave Double Resonance Spectroscopy of Ar-DF (v = 0,1,2) Justin L. Neill, Gordon G. Brown, and Brooks H. Pate University of Virginia Department.
An Experimental Approach to the Prediction of Complete Millimeter and Submillimeter Spectra at Astrophysical Temperatures Ivan Medvedev and Frank C. De.
Fast Sweeping Double Resonance Microwave - (sub)Millimeter Spectrometer Based on Chirped Pulse Technology Brian Hays 1, Susanna Widicus Weaver 1, Steve.
Chirped-Pulse Microwave Spectroscopy in the Undergraduate Chemistry Curriculum Sydney Gaster, Taylor Hall, Sean Arnold, Deondre Parks, Gordon Brown Department.
SEEING IS BELIEVING: An 11 GHz molecular beam rotational spectrum (7.5 – 18.5 GHz) with 100 kHz resolution in 15  s measurement time Brian C. Dian, Kevin.
Steven T. Shipman, 1 Leonardo Alvarez-Valtierra, 1 Justin L. Neill, 1 Brooks H. Pate, 1 Alberto Lesarri, 2 and Zbigniew Kisiel 3 Design and performance.
CRISTOBAL PEREZ, MARINA SEKUTOR, ANDREY A
Max Planck Institute for the Structure and Dynamics of Matter
Rotational spectra of C2D4-H2S, C2D4-D2S, C2D4-HDS and 13CH2CH2-H2S complexes: Molecular symmetry group analysis Mausumi Goswami and E. Arunan Inorganic.
MEASURING CONFORMATIONAL ENERGY DIFFERENCES USING PULSED-JET MICROWAVE SPECTROSCOPY CAMERON M FUNDERBURK, SYDNEY A GASTER, TIFFANY R TAYLOR, GORDON G BROWN.
A Chirped Pulse Fourier Transform Microwave (CP-FTMW) Spectrometer with Laser Ablation Source to Search for Actinide-Containing Molecules and Noble Metal.
Carlos Cabezas and Yasuki Endo
The CP-FTMW Spectrum of Verbenone
CHIRALITY DETERMINATION FROM PULSED-JET FOURIER TRANSFORM
Presentation transcript:

Microwave Spectroscopy of Seven Conformers of 1,2-Propanediol Justin L. Neill, Matt T. Muckle, and Brooks H. Pate, Department of Chemistry, University of Virginia F. J. Lovas, D. F. Plusquellic, Optical Technology Division, NIST A. J. Remijan, National Radio Astronomy Observatory Centers for Chemical Innovation

Conformers of 1,2-propanediol: mp2/aug-cc-pVTZ O 2 -C 3 -C 4 -C 7 dihedral = 180ºO 2 -C 3 -C 4 -C 7 dihedral = 60º O 2 is H-bond acceptor O 2 is H-bond donor conf. 1 E = 192 cm -1 conf. 2 E = 83 cm -1 conf. 3 E = 0 cm -1 conf. 5 E = 87 cm -1 conf. 4 E = 338 cm -1 conf. 6 E = 213 cm -1 conf. 7 E = 345 cm -1 conf. 8 E = 441 cm -1 Detected by Caminati a Detected by Lockley et al b a W. Caminati, J. Mol. Spectrosc. 86 (1981) b T.J.L. Lockley et al., J. Mol. Struct. 612 (2002)

New Measurements Two spectrometers employed: 1) Balle-Flygare-type FTMW spectrometer at NIST a discovered conformer 4 Stark effect measurements (conformers 1-3) high-resolution measurements (all conformers) for final fits 2) Chirped-pulse FTMW spectrometer at UVa b operating between GHz—288,000 averaged FIDs a F.J. Lovas and R.D. Suenram, J. Chem. Phys. 87 (1987) b G.G. Brown, B.C. Dian, K.O. Douglass, S.M. Geyer, S.T. Shipman, and B.H. Pate, Rev. Sci. Instrum. 79 (2008) Sample (mix of enantiomers) purchased from Aldrich (>99.5%, <0.2% H 2 O); internal reservoir, heated to 60ºC (CP-FTMW: strongest (H 2 O) 2 line factor of 3,000 down from strongest 1,2-propanediol line)‏

CP-FTMW Modifications GS/s AWG (Tektronix AWG7122B); more accurate intensities over full spectral range -50 GS/s oscilloscope (Tektronix DPO71022); all signals directly digitized (no peaks due to mixing bleedthroughs)‏ -Sample conservation techniques: 2 nozzles, 10 FIDs per gas pulse -nozzle slowed to 0.6 Hz (limited by oscilloscope's data processing speed) at a 20 μs FID length (10,000,000 points collected per valve pulse)‏ 21,000 FIDs collected per hour of averaging—14 hours to collect 288k average spectrum -limited by oscilloscope processing speed—potential factor of 16 enhancement Other talks using UVa CP-FTMW: MH08—propofol (A.Lesarri)‏ TA05—strawberry aldehyde (S.Shipman)‏ TA09—chloropentafluorobenzene (A.Osthoff)‏ WI06—isomers of HSCN in electric discharge (M.McCarthy)‏ RC11—p-methoxyphenethylamine—water (J.Neill)‏ RH08—diethylsilane (A.Steber)‏ trans-methyl formate (M.Muckle)

CP-FTMW Modifications FastFrame Arbitrary waveform generator puts out 10- MW pulse chain (with 25 µs buffer between pulses) Oscilloscope saves spectrum every ~2.5 h (in case of power outages, phase shifts) Puts greater stress on passive diode limiter (Advanced Control Components) cannot reliably run with 1 kW TWT, used 300 W TWT instead Oscilloscope collects 10 acquisitions before moving data into computer memory Also keeps “average” frame as frame 11 Not efficiently processed: averages frames 1-10 over time as well as frame 11—could delete frames 1-10 after averaging together Need to use longer valve pulse (~700 µs) Frame 1Frame 7

Observations of Previously Assigned Conformers All simulations from SPCAT, with ab initio dipoles, at 0.9 K. Noise level ~500 nV (20,000:1 S/N on strongest line)

Observations of Previously Assigned Conformers Noise level ~500 nV (20,000:1 S/N on strongest line)

Observations of New Conformers x17.5

ParameterConformer 2Theory A (MHz) (16) B (MHz) (7) C (MHz) (6) Δ J (kHz)0.797(15)0.772 Δ JK (kHz)4.485(70)4.88 Δ K (kHz)3.16(35)3.44 δ J (kHz)0.1827(60)0.177 δ K (kHz)3.14(21)2.96 Nlines61 Wt. Std.0.90 µ a (D)2.496(2)-2.64 µ b (D)0.309(20)0.28 µ c (D)0.45(8)-0.57 ParameterConformer 3Theory A (MHz) (8) B (MHz) (5) C (MHz) (4) Δ J (kHz)0.738(7)0.719 Δ JK (kHz)5.276(30)5.56 Δ K (kHz)2.53(10)2.97 δ J (kHz)0.1631(16)0.155 δ K (kHz)3.180(31)3.16 Nlines57 Wt. Std.0.88 µ a (D)1.201(3)1.21 µ b (D)1.916(6)-2.10 µ c (D)0.365(36)0.45 ParameterConformer 5Theory A (MHz) (2) B (MHz) (1) C (MHz) (1) Δ J (kHz)0.751(14)0.714 Δ JK (kHz)5.29(7)5.66 Δ K (kHz)2.75(22)2.99 δ J (kHz)0.152(6)0.143 δ K (kHz)3.34(14)3.12 Nlines44 Wt. Std.1.1 µ a / µ b µ b / µ b 11 µ c / µ b ParameterConformer 6Theory A (MHz) (5) B (MHz) (4) C (MHz) (3) Δ J (kHz)0.76(12)0.767 Δ JK (kHz)5.1(6)4.81 Δ K (kHz)2.9(fixed)2.89 δ J (kHz)0.24(11)0.166 δ K (kHz)2.8(fixed)2.85 Nlines18 Wt. Std.1.9 µ a / µ a 11 µ b / µ a µ c / µ a

ParameterConformer 1Theory A (MHz) (9) B (MHz) (9) C (MHz) (7) Δ J (kHz)1.774(29)1.80 Δ JK (kHz)6.354(82)5.55 Δ K (kHz)-4.51(12)-3.28 δ J (kHz)0.267(13)0.254 δ K (kHz)1.74(18)0.89 Nlines46 Wt. Std.0.63 µ a (D)2.202(4)2.35 µ b (D)0 (fixed)-0.03 µ c (D)0.616(10)0.70 ParameterConformer 4Theory A (MHz) (7) B (MHz) (9) C (MHz) (8) Δ J (kHz)1.751(31)1.74 Δ JK (kHz)8.21(11)7.47 Δ K (kHz)-6.51(12)-4.86 δ J (kHz)0.244(17)0.244 δ K (kHz)2.72(23)1.61 Nlines32 Wt. Std.0.57 µ a / µ a 11 µ b / µ a µ c / µ a ParameterConformer 7Theory A (MHz) (8) B (MHz) (5) C (MHz) (6) Δ J (kHz)1.84(3)1.83 Δ JK (kHz)6.2(2)5.85 Δ K (kHz)-5.0(3)-3.84 δ J (kHz)0.23(3)0.249 δ K (kHz)1.8(3)1.19 Nlines20 Wt. Std.0.50 µ a / µ c µ b / µ c µ c / µ c 11

1441 lines present in spectrum at 3:1 S/N or better; 1141 remain unassigned MW-MW double resonance techniques are necessary to assign these spectra. blown up 140x from original spectrum

Astronomical Search New model incorporates grain-surface radical reactions, predicting high abundances of a variety of complex astrochemical species. CH 2 OH + CH 2 OH  (CH 2 OH) 2 (abundance predicted accurately) Not incorporated into this model, but possible similar propanediol formation route exists in this type of chemistry: CH 3 CHOH + CH 2 OH  CH 2 (OH)CH(OH)CH 3 (likely more stable)(1,2-propanediol) CH 2 CH 2 OH + CH 2 OH  CH 2 (OH)CH 2 CH 2 (OH) (1,3-propanediol)

Astronomical Search Since ethylene glycol has been found in Sgr B2(N), both 1,2- and 1,3-propanediols were sought in the same source. For 1,2-propanediol, a total of 12 transitions (six from conformer 2, six from conformer 3) were sought. The lowest noise level attained was ~4 mK. Assuming a temperature of 10 K, the upper limit on the 1,2-propanediol conformer 3 column density is 8 x cm -2. For 1,3-propanediol, a total of 22 transitions of conformer 1 were sought; the lowest noise level attained was ~5 mK. The upper limit on the 1,3-propanediol conformer 1 column density is 2 x cm -2. For comparison, ethylene glycol column density: 3.3 x cm -1

Acknowledgements Funding: National Science Foundation Centers for Chemical Innovation grant University of Virginia Jefferson Scholars Foundation (J. Neill) Tektronix

Conformer 8? Ab initio (mp2/aug-cc-pvtz): A = MHz B = MHz C = MHz µ a = D µ b = D µ c = 0.35 D only ~5 transitions might be visible at current sensitivity