FORWARD AND INVERSE MODELLING OF GPS OBSERVATIONS FROM FENNOSCANDIA G.A. Milne 1, J.X. Mitrovica 2, H.-G. Scherneck 3, J.L. Davis 4, J.M. Johansson 3,

Slides:



Advertisements
Similar presentations
SPP 1257 Modelling of the Dynamic Earth from an Integrative Analysis of Potential Fields, Seismic Tomography and other Geophysical Data M. Kaban, A. Baranov.
Advertisements

Geodetic monitoring of crustal deformation in Dronning Maud Land, Antarctica Hannu Koivula, Jaakko Mäkinen, Joel Ahola and Markku Poutanen Finnish Geodetic.
An estimate of post-seismic gravity change caused by the 1960 Chile earthquake and comparison with GRACE gravity fields Y. Tanaka 1, 2, V. Klemann 2, K.
Geodetic Reference Frames In Presence of Crustal Deformations Martin Lidberg 1,2, Maaria Nordman 3, Jan M. Johansson 1,4, Glenn A Milne5, Hans-Georg Scherneck.
Dynamic topography, phase boundary topography and latent-heat release Bernhard Steinberger Center for Geodynamics, NGU, Trondheim, Norway.
The postglacial rebound signal of Fennoscandia - observed by absolute gravimetry, GPS, and tide gauges Bjørn Ragnvald Pettersen Department of Mathematical.
Glacial Isostatic Adjustment Contributions to Tide Gauge, Altimetry and GRACE Observations Glenn Milne Dept of Earth Sciences University of Durham, UK.
Constraints on Mantle Structure from Surface Observables Magali Billen University of California, Davis Department of Geology MYRES I: Heat, Helium & Whole.
Geological Constraints Lecture 6: Geodynamics Carolina Lithgow-Bertelloni.
Effect of Surface Loading on Regional Reference Frame Realization Hans-Peter Plag Nevada Bureau of Mines and Geology and Seismological Laboratory University.
The Four Candidate Earth Explorer Core Missions Consultative Workshop October 1999, Granada, Spain, Revised by CCT GOCE S 43 Science and.
National Survey and Cadastre - Denmark Crustal deformations at permanent GPS sites in Denmark Shfaqat Abbas Khan and Per Knudsen, Geodetic Dept., Kort.
Glacial Rebound Glacial Rebound Studies depend on many factors. What are they ? Ice load History of the load Ocean water load on coastlines and globally.
Facilitating Joint Analysis of Data From Several Systems Using Geophysical Models Hans-Peter Plag, William C. Hammond, Geoffrey Blewitt Nevada Bureau of.
Fresh Water Budget of the Arctic and Atmospheric Mode of Variability NSF -- Fresh Water Initiative Bruno Tremblay Robert Newton Lamont Doherty Earth Observatory.
Recent results from GRACE in Greenland and Antarctica Isabella Velicogna* and John Wahr** * ESS, University of California Irvine, Irvine CA ** Dept Of.
Monitoring the Global Sea Level Rise Budget with Jason, Argo and GRACE Observations Eric Leuliette and Laury Miller NOAA/Laboratory for Satellite Altimetry.
Roland Burgmann and Georg Dresen
GEO 5/6690 Geodynamics 24 Oct 2014 © A.R. Lowry 2014 Read for Wed 5 Nov: T&S Last Time: Flexural Isostasy Generally, loading will occur both by.
Integrated 2-D and 3-D Structural, Thermal, Rheological and Isostatic Modelling of Lithosphere Deformation: Application to Deep Intra- Continental Basins.
Chalmers / Radio and Space / Space Geodesy 1 CHALMERS Institute’s report Space Geodesy group Department for Radio and Space Science.
Generalization of Farrell's loading theory for applications to mass flux measurement using geodetic techniques J. Y. Guo (1,2), C.K. Shum (1) (1) Laboratory.
The Hunting of the SNARF Giovanni F. Sella Seth Stein Northwestern University Timothy H. Dixon University of Miami "What's the good of Mercator's North.
Chapter 8: The future geodetic reference frames Thomas Herring, Hans-Peter Plag, Jim Ray, Zuheir Altamimi.
Outline  Construction of gravity and magnetic models  Principle of superposition (mentioned on week 1 )  Anomalies  Reference models  Geoid  Figure.
Sea Level Change Measurements: Estimates from Altimeters Understanding Sea Level Rise and Variability June 6-9, 2006 Paris, France R. S. Nerem, University.
GLACIAL ISOSTATIC ADJUSTMENT AND COASTLINE MODELLING Glenn Milne
Thermosteric Effects on Long-Term Global Sea Level Change Jianli Chen Center for Space Research, University of Texas at Austin, USA
Background to >10 years of BIFROST activities Jan M. Johansson 1, Hans-Georg Scherneck 1, Rüdiger Haas 1, Sten Bergstrand 1 Martin Lidberg 1,2, Lotti Jivall.
Sea-Level Change Driven by Recent Cryospheric and Hydrological Mass Flux Mark Tamisiea Harvard-Smithsonian Center for Astrophysics James Davis Emma Hill.
Thoughts on the GIA Issue in SNARF Jim Davis & Tom Herring Input from and discussions with Mark Tamisiea, Jerry Mitrovica, and Glenn Milne.
An improved and extended GPS derived velocity field of the postglacial adjustment in Fennoscandia Martin Lidberg 1,3, Jan M. Johansson 1, Hans-Georg Scherneck.
Rheology of the Earth. Schedule Rheology Viscous, elastic & plastic Viscous, elastic & plastic Deformation maps and “Christmas tree’s” for mantle & lithosphere.
Patagonia Ice Field Melting Observed by GRACE Joint International GSTM and DFG SPP Symposium, October 15-17, 2007 at GFZ Potsdam J.L. Chen 1, C.R. Wilson.
Closure of the Budget of Global Sea Level Rise Over the GRACE Era: The Importance and Magnitudes of the Corrections Required for Quaternary Ice-Age Influence.
(a) Pre-earthquake and (b) post-earthquake Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images of North Sentinel Island. The.
The Glacial Isostatic Adjustment of Fennoscandia: from Celcius to BIFROST Glenn Milne, University of Durham February 2004.
More observables: gravity and the geoid Isostasy “Perfect” adjustment not realistic… –Rigid crust, dynamic features in mantle mean that density anomalies.
SNARF: Theory and Practice, and Implications Thomas Herring Department of Earth Atmospheric and Planetary Sciences, MIT
A Preliminary Calibrated Deglaciation Chronology for the Eurasian Ice Complex Lev Tarasov¹, W.R. Peltier², R. Gyllencreutz³, O. Lohne³, J. Mangerud³, and.
Visual Computing of Global Postglacial Rebound in a Spherical Domain Ladislav Hanyk 1, Ctirad Matyska 1 and David A. Yuen 2
State-of-the-art physical models for calculating atmospheric pressure loading effects 1 Geodätische Woche October, Köln, Germany Dudy D.
The effect of GIA models on mass-balance estimates in Antarctica Riccardo Riva, Brian Gunter, Bert Vermeersen, Roderik Lindenbergh and Hugo Schotman Department.
The Plausible Range of GIA Contributions to 3-D Motions at GPS Sites in the SNARF Network 2004 Joint AssemblyG21D-03 Mark Tamisiea 1, Jerry Mitrovica 2,
WOCE and BEYOND WOCE and BEYOND Nov Sea Level Rise: Can we explain what we measure? Anny Cazenave LEGOS-GRGS/CNES Toulouse, France.
Gravimetry Geodesy Rotation
ROYONNA L. BRISTOL UNIVERSITY OF NEBRASKA AT OMAHA 6 NOVEMBER 2013 PLATE TECTONICS.
Don Chambers Center for Space Research, The University of Texas at Austin Josh Willis Jet Propulsion Laboratory, California Institute of Technology R.
Department of Earth Sciences “A. Desio”
Nature of contrasting changes in sea level in the Northern and Southern hemispheres of the Earth Yuri Barkin Sternberg Astronomical Institute, Moscow,
Glaciation-Induced Sea-Level Change: Theory and Applications Glenn Milne, University of Durham February 2004.
5/18/2994G21D-04 Spring AGU Realization of a Stable North America Reference Frame Thomas Herring Department of Earth Atmospheric and Planetary, Sciences,
Center for Satellite Applications and Research (STAR) Review 09 – 11 March 2010 Image: MODIS Land Group, NASA GSFC March 2000 Closing the Global Sea Level.
Assessing the GIA Contribution to SNARF Mark Tamisiea, James Davis, and Emma Hill Proudman Oceanographic Laboratory Harvard-Smithsonian Center for Astrophysics.
Assessing the GIA Contribution to SNARF Mark Tamisiea and Jim Davis Harvard-Smithsonian Center for Astrophysics.
Towards a standard model for present-day signals due to postglacial rebound H.-P. Plag, C. Kreemer Nevada Bureau of Mines and Geology and Seismological.
Sea-Level changes.
IGARSS 2011, Vancuver, Canada July 28, of 14 Chalmers University of Technology Monitoring Long Term Variability in the Atmospheric Water Vapor Content.
FORWARD AND INVERSE MODELLING OF GPS OBSERVATIONS OF FENNOSCANDIAN GIA G.A. Milne 1, J.X. Mitrovica 2, H.-G. Scherneck 3, J.L. Davis 4, J.M. Johansson.
Jacqueline Austermann Harriet Lau, Jerry Mitrovica CIDER community workshop, May 6 th 2016 Image credit: Mike Beauregard Towards reconciling viscosity.
Lev Tarasov and W.R. Peltier
Figure 1 Predictions of (a) polar wander speed, (c) polar wander direction and (e) as a function of lower-mantle viscosity, in which an elastic lithosphere.
Stable North American Reference Frame (SNARF): Version 1
Geodesy & Crustal Deformation
Geodesy & Crustal Deformation
Geodesy & Crustal Deformation
Geodesy & Crustal Deformation
Lev Tarasov and W.R. Peltier
Stable North American Reference Frame (SNARF): Version 1
Session 5: Higher level products (Internal)
Presentation transcript:

FORWARD AND INVERSE MODELLING OF GPS OBSERVATIONS FROM FENNOSCANDIA G.A. Milne 1, J.X. Mitrovica 2, H.-G. Scherneck 3, J.L. Davis 4, J.M. Johansson 3, H. Koivula 5, M. Vermeer 6 1 Dept. of Geological Sciences, University of Durham, UK 2 Dept. of Physics, University of Toronto, Canada 3 Onsala Space Observatory, Sweden 4 Harvard-Smithsonian Center for Astrophysics, USA 5 Finish Geodetic Institute, Finland 6 Institute of Geodesy, Helsinki University of Technology, Finland

BASELINE INFERENCES FOR FENNOSCANDIAN REBOUND OBSERVATIONS SEA LEVEL AND TECTONICS Apply GPS to observe the present-day deformation field in Fennoscandia. Employ observations to: (1) Infer GIA model parameters. (2) Estimate secular height shift of geoid. (3) Examine importance of neotectonic processes.

GIA MODEL Earth Forcing Earth Rheology Rotational potential Euler equations Surface loading Ice ICE-3G (Tushingham & Peltier, 1991) FENN+BARENTS (Lambeck et al., 1998) Ocean Sea-level equation Impulse response formalism Linear Maxwell rheology Compressible 1D structure Time-dependent ocean function Near-field water influx

SUMMARY ● Forward modelling shows: (1) FENN+BARENTS ice model produces significantly better fit compared to ICE-3G. (2) Viscosity inference relatively insensitive to ice model. (3) GIA model can account for most of observed signal. ● Inverse modelling shows: (1) Depth sensitivity to viscosity is site dependent. (2) Data can resolve two-layer upper mantle structure and a lower mantle layer to a depth of ~1200 km. ● Residual signal to be explored further: (1) Neotectonics. (2) Dynamic ice models. (3) Lateral variations in earth structure.