Flare Thermal Energy Brian Dennis NASA GSFC Solar Physics Laboratory 12/6/20081Solar Cycle 24, Napa, 8-12 December 2008.

Slides:



Advertisements
Similar presentations
Thermal and nonthermal contributions to the solar flare X-ray flux B. Dennis & K. PhillipsNASA/GSFC, USA J. & B. SylwesterSRC, Poland R. Schwartz & K.
Advertisements

RHESSI Investigations of the Neupert Effect in Solar Flares Brian R. Dennis AAS/SPD Meeting 6 June 2002.
Masuda Flare: Remaining Problems on the Looptop Impulsive Hard X-ray Source in Solar Flares Satoshi Masuda (STEL, Nagoya Univ.)
THE IMPULSIVE X-RAY RESPONSE IN FLARE FOOTPOINTS TOMASZ MROZEK WROCLAW UNIWERSITY ASTRONOMICAL INSTITUTE POLAND.
RHESSI observations of LDE flares – extremely long persisting HXR sources Mrozek, T., Kołomański, S., Bąk-Stęślicka, U. Astronomical Institute University.
Thick Target Coronal HXR Sources Astrid M. Veronig Institute of Physics/IGAM, University of Graz, Austria.
Physical characteristics of selected X-ray events observed with SphinX spectrophotometer B. Sylwester, J. Sylwester, M. Siarkowski Space Research Centre,
Cristina Chifor SESI Student Intern 2005 Solar Physics, Code 612 NASA/Goddard Space Flight Center Mentors: Dr. Ken Phillips & Dr. Brian Dennis FE AND FE/NI.
R. P. Lin Physics Dept & Space Sciences Laboratory University of California, Berkeley The Solar System: A Laboratory for the Study of the Physics of Particle.
Solar flares and accelerated particles
M1.0 flare of 22 Oct 2002 RHESSI observations of the M 1.0 solar flare on 22 October 2002 A. Berlicki 1,2, B. Schmieder 1, N. Vilmer 1, G. Aulanier 1 1)
Low-Energy Coronal Sources Observed with RHESSI Linhui Sui (CUA / NASA GSFC)
Super-Hot Thermal Plasmas in Solar Flares
Relations between concurrent hard X-ray sources in solar flares M. Battaglia and A. O. Benz Presented by Jeongwoo Lee NJIT/CSTR Journal Club 2007 October.
Imaging with subcollimator 1. Dec 6, 2006 white light flare Hinode/SOT image during the main HXR peak! SOT resolution.
24 Oct 2001 A Cool, Dense Flare T. S. Bastian 1, G. Fleishman 1,2, D. E. Gary 3 1 National Radio Astronomy Observatory 2 Ioffe Institute for Physics and.
X-Ray Observation and Analysis of a M1.7 Class Flare Courtney Peck Advisors: Jiong Qiu and Wenjuan Liu.
Working Group 2 - Ion acceleration and interactions.
RHESSI Observations of the 29-Oct-2003 Flare. 29-Oct-2003 General Info 29-OCT-03 GOES Start: 20:37, Peak: 20:49, End 21:01 Size X10 Position S19W09 (AR486)
Characterizing Thermal and Non- Thermal Electron Populations in Solar Flares Using RHESSI Amir Caspi 1,2, Säm Krucker 2, Robert P. Lin 1,2 1 Department.
RHESSI/GOES Observations of the Non-flaring Sun from 2002 to J. McTiernan SSL/UCB.
RHESSI/GOES Xray Analysis using Multitemeprature plus Power law Spectra. J.McTiernan (SSL/UCB)
Measuring the Temperature of Hot Solar Flare Plasma with RHESSI Amir Caspi 1,2, Sam Krucker 2, Robert P. Lin 1,2 1 Department of Physics, University of.
Statistical Properties of Hot Thermal Plasmas in M/X Flares Using RHESSI Fe & Fe/Ni Line * and Continuum Observations Amir Caspi †1,2, Sam Krucker 2, Robert.
Modeling the Neupert Effect in Flares: Connecting Theory and Observation Andrea Egan Advisors: Dr. Trae Winter and Dr. Kathy Reeves.
FLARE ENERGETICS:TRACE WHITE LIGHT AND RHESSI HARD X-RAYS* L. Fletcher (U. Glasgow), J. C. Allred (GSFC), I. G. Hannah (UCB), H. S. Hudson (UCB), T. R.
Coronal HXR sources a multi-wavelength perspective.
RHESSI/GOES Xray Analysis using Multitemeprature plus Power law Spectra. J.McTiernan (SSL/UCB) ABSTRACT: We present spectral fits for RHESSI and GOES solar.
Search for X-ray emission from coronal electron beams associated with type III radio bursts Pascal Saint-Hilaire, Säm Krucker, Robert P. Lin Space Sciences.
RHESSI observations of LDE flares – extremely long persisting HXR sources Mrozek, T., Kołomański, S., Bąk-Stęślicka, U. Astronomical Institute University.
RHESSI/GOES Observations of the Non-flaring Sun from 2002 to J. McTiernan SSL/UCB.
RHESSI OBSERVATIONS OF FLARE FOOTPOINTS AND RIBBONS H. Hudson and M. Fivian (SSL/UCB)
GLOBAL ENERGETICS OF FLARES Gordon Emslie (for a large group of people)
Constraints on Particle Acceleration from Interplanetary Observations R. P. Lin together with L. Wang, S. Krucker at UC Berkeley, G Mason at U. Maryland,
Sizes of Hard X-ray Footpoints Brian Dennis Rick Pernak (CUA) NASA GSFC.
Co-spatial White Light and Hard X-ray Flare Footpoints seen above the Solar Limb: RHESSI and HMI observations Säm Krucker Space Sciences Laboratory, UC.
Thermal, Nonthermal, and Total Flare Energies Brian R. Dennis RHESSI Workshop Locarno, Switzerland 8 – 11 June, 2005.
Multiwavelength observations of a partially occulted solar flare Laura Bone, John C.Brown, Lyndsay Fletcher.
RHESSI Microflares Steven Christe 1,2, Säm Krucker 2, Iain Hannah 3, R. P. Lin 1,2 1 Physics Department, University of California at Berkeley 2 Space Sciences.
Loop-top altitude decrease in an X-class flare A.M. Veronig 1, M. Karlický 2,B. Vršnak 3, M. Temmer 1, J. Magdalenić 3, B.R. Dennis 4, W. Otruba 5, W.
Locarno, 8 June 2005Peter Gallagher (UCD) Chromospheric Evaporation Peter Gallagher University College Dublin Ryan Milligan Queens University Belfast.
Magnetic Reconnection in Flares Yokoyama, T. (NAOJ) Reconnection mini-workshop Kwasan obs. Main Title 1.Introduction : Reconnection Model of.
Lyndsay Fletcher, University of Glasgow Ramaty High Energy Solar Spectroscopic Imager Fast Particles in Solar Flares The view from RHESSI (and TRACE) MRT.
Measurement of the Reconnection Rate in Solar Flares H. Isobe 2004/12/6 Taiyo-Zasshikai.
Studies on the 2002 July 23 Flare with RHESSI Ayumi ASAI Solar Seminar, 2003 June 2.
Pre-flare activity of M1.2 flare 김수진 1,2, 문용재 1, 김연한 1, 박영득 1, 김갑성 2 1. Korea Astronomy and Space Science Institute 2. Kyung Hee University.
Source sizes and energy partition from RHESSI imaging and spectroscopy Alexander Warmuth Astrophysikalisches Institut Potsdam.
H α and hard X-ray observations of solar white-light flares M. D. Ding Department of Astronomy, Nanjing University.
Joint session WG4/5 Points for discussion: - Soft-hard-soft spectral behaviour – again - Non-thermal pre-impulsive coronal sources - Very dense coronal.
Determining the Heating Rate in Reconnection Formed Flare Loops Wenjuan Liu 1, Jiong Qiu 1, Dana W. Longcope 1, Amir Caspi 2, Courtney Peck 2, Jennifer.
Spectral Breaks in Flare HXR Spectra A Test of Thick-Target Nonuniform Ionization as an Explanation Yang Su NASA,CUA,PMO Gordon D. Holman.
RHESSI Hard X-Ray Observations of an EUV Jet on August 21, 2003 Lindsay Glesener, Säm Krucker RHESSI Workshop 9, Genova September 4, 2009.
Probing Electron Acceleration with X-ray Lightcurves Siming Liu University of Glasgow 9 th RHESSI Workshop, Genova, Italy, Sep
Energy Budgets of Flare/CME Events John Raymond, J.-Y. Li, A. Ciaravella, G. Holman, J. Lin Jiong Qiu will discuss the Magnetic Field Fundamental, but.
Direct Spatial Association of an X-Ray Flare with the Eruption of a Solar Quiescent Filament Gordon D. Holman and Adi Foord (2015) Solar Seminar on July.
Characterizing Thermal and Non- Thermal Electron Populations in Solar Flares Using RHESSI Amir Caspi 1,2, Säm Krucker 2, Robert P. Lin 1,2 1 Department.
STUDY OF A DENSE, CORONAL THICK TARGET SOURCE WITH THE MICROWAVE DATA AND 3D MODELING Gregory Fleishman, Yan Xu, Gelu Nita, & Dale Gary 03/12/2015.
RHESSI and the Solar Flare X-ray Spectrum Ken Phillips Presentation at Wroclaw Workshop “ X-ray spectroscopy and plasma diagnostics from the RESIK, RHESSI.
Coronal X-ray Emissions in Partly Occulted Flares Paula Balciunaite, Steven Christe, Sam Krucker & R.P. Lin Space Sciences Lab, UC Berkeley limb thermal.
1 Wei Liu, Tongjiang Wang, Brian Dennis, & Gordon Holman NASA Goddard Space Flight Center Evidence of Magnetic Reconnection & Existence of Current Sheet.
2. Data3. Results full disk image (H  ) of the flare (Sartorius Telescope) NOAA Abstract Preflare Nonthermal Emission Observed in Microwave and.
Observations of the Thermal and Dynamic Evolution of a Solar Microflare J. W. Brosius (Catholic U. at NASA’s GSFC) G. D. Holman (NASA/GSFC)
Statistical Properties of Super-Hot Solar Flares Amir Caspi †1*, Säm Krucker 2,3, Robert P. Lin 2,4,5 †
Thermal Imaging of Multi-Temperature Flare Plasma with RHESSI Visibilities A.Caspi S. Krucker, G. Hurford, J. McTiernan Space Sciences Laboratory University.
Sweet Solar SAP: Boiling Down the Thermal Energy Content of Supra-Arcade Plasma Ashley Armstrong Advisor: Dr. Kathy Reeves Solar REU Summer 2012.
RHESSI and H study of the X4 Flare of 3 Nov 2003
Chromospheric and Transition Region Dynamics
Nonthermal Electrons in an Ejecta Associated with a Solar Flare
-Short Talk- The soft X-ray characteristics of solar flares, both with and without associated CMEs Kay H.R.M., Harra L.K., Matthews S.A., Culhane J.L.,
Downflow as a Reconnection Outflow
Presentation transcript:

Flare Thermal Energy Brian Dennis NASA GSFC Solar Physics Laboratory 12/6/20081Solar Cycle 24, Napa, 8-12 December 2008

Flare Thermal Energy Objective – Determine thermal energy vs. time during flare. – Estimate total thermal energy of flare. Simple Method – Thermal energy at time of soft X-ray peak – Assume a single temperature Advanced Methods – Allow multithermal plasma – Allow for cooling during impulsive phase – Add thermal energy required for decay phase

Thermal Flare Energy Simple Method – Assume a single temperature plasma. – Ignore cooling during impulsive phase and heating afterwards. – Use GOES fluxes at time of peak soft X-ray emission to obtain temperature (T in degrees K) and emission measure (EM). – Use RHESSI 6 – 12 keV image at same time to obtain a volume V = A 3/2 – Assume 100% filling factor. – Thermal energy, U th = 3nkT = 4.14x (EM V) 1/2 T ergs

21 April 2002

GOES Temperature & Emission Measure

RHESSI Light Curve

RHESSI Image (6 – 12 keV) Area inside 50% contour = 8576 arcsec 2 Area inside 70% contour = 3056 arcsec 2

Peak Thermal Energy GOES Soft X-ray Peak - 21 April 2002 Time: 01:45 UT Temperature (T): 16 MK Emission Measure (EM): cm -3 RHESSI Area (A): arcsec 2 (inside 50% contour, 6-12 keV at 01:30 UT) Volume (V = A 3/2 ): cm 3 Density (EM/V) 1/ cm -3 Thermal Energy (U th ): ergs (E th = 4.14 x (EM V) 1/2 T ergs)

Advanced Method Allow multithermal plasma Assume DEM = A T -  cm -3 keV -1 Fit RHESSI spectra to multithermal + power-law function. Calculate thermal energy for T min = T GOES Quote thermal energy at peak of RHESSI flux.

Peak Thermal Energy RHESSI Soft X-ray Peak - 21 April 2002 Time: 01:30 UT a ( DEM Q T - a ) 6.0 T min = T GOES : 1.4 keV (16 MK) EM (T min to T max ): cm -3 RHESSI Area (A): arcsec 2 (inside 50% contour, 6-12 keV at 01:30 UT) Volume, V = A 3/2 : cm 3 Density, n = (EM/V) 1/ cm -3 Thermal Energy (U th ): ergs (E th = 3 k/n  DEM T dT ergs) (for density independent of T)

23 July 2002

GOES Temperature & Emission Measure

RHESSI Light Curve

RHESSI Image (6 – 12 keV) Area inside 50% contour = 244 arcsec 2 Area inside 70% contour = 115 arcsec 2

RHESSI Images

Peak Thermal Energy GOES Soft X-ray Peak - 23 July 2002 Time: 00:35 UT Temperature (T): 22 MK Emission Measure (EM): cm -3 RHESSI Area (A): arcsec 2 (inside 50% contour, 6-12 keV at 00:35 UT) Volume (V = A 3/2 ): cm 3 Density (EM/V) 1/ cm -3 Thermal Energy (U th ): ergs (E th = 4.14 x (EM V) 1/2 T ergs)

Thermal Flare Energy More Advanced Method (Veronig et al.) Assume a single temperature plasma. Include conductive (L cond ) and radiative (L rad ) cooling losses. Include estimated gravitational (U gravity ) and kinetic (U kinetic ) plasma energies. Include heating after impulsive phase. Use GOES spectra throughout flare to obtain temperature T and emission measure EM as functions of time. Estimate volume V (assumed constant) from RHESSI footpoint area x loop length. Assume 100% filling factor. SXR plasma energy, U SXR = U thermal + U gravity + U kinetic = (3 – 10) nkTV = (4 – 13) x (EM V) 1/2 T ergs Heating rate, P = dU/dt + L cond + L rad erg s -1 Total heating =  P dt erg

Veronig - 21 April 2002

Veronig - 23 July 2002

Thermal Energies Units 21 April 2002 x July 2002 X4.8 Author Spacecraft Dennis GOES Dennis RHESSI Veronig GOES Dennis GOES Veronig GOES Holman GOES Holman RHESSI Time – UT hh:mm01:4501:30<04:0000:35<02:0000:36 00:27 T MK O1722O EM cm O Loop Length (l)10 8 cm14035 Area (A)10 18 cm Volume (V)10 26 cm O180/40 Density (EM/V) 1/ cm Thermal Energy10 30 ergs Total Heating10 30 ergs90200 Nonthermal E10 30 ergs26  10

Conclusions Thermal energy estimates subject to order-of- magnitude uncertainties. SXR-emitting plasma has ~10 times more energy at the peak of the 21 April flare than at the peak of the 23 July flare. Including conductive cooling losses can increase the total energy requirement by a large factor. Including the decay phase energy input increases the total flare energy by factor of ~2.