Thermal, Nonthermal, and Total Flare Energies Brian R. Dennis RHESSI Workshop Locarno, Switzerland 8 – 11 June, 2005.

Slides:



Advertisements
Similar presentations
Line Features in RHESSI Spectra Kenneth J. H. Phillips Brian R. Dennis GSFC RHESSI Workshop Taos, NM 10 – 11 September 2003.
Advertisements

Thermal and nonthermal contributions to the solar flare X-ray flux B. Dennis & K. PhillipsNASA/GSFC, USA J. & B. SylwesterSRC, Poland R. Schwartz & K.
L. Teriaca, IMPRS Seminar, Lindau 08/12/04 Spectroscopy of the solar Transition Region and Corona L. Teriaca.
RHESSI Investigations of the Neupert Effect in Solar Flares Brian R. Dennis AAS/SPD Meeting 6 June 2002.
RHESSI observations of LDE flares – extremely long persisting HXR sources Mrozek, T., Kołomański, S., Bąk-Stęślicka, U. Astronomical Institute University.
Thick Target Coronal HXR Sources Astrid M. Veronig Institute of Physics/IGAM, University of Graz, Austria.
Cristina Chifor SESI Student Intern 2005 Solar Physics, Code 612 NASA/Goddard Space Flight Center Mentors: Dr. Ken Phillips & Dr. Brian Dennis FE AND FE/NI.
Energy Release and Particle Acceleration in Flares Siming Liu University of Glasgow 9 th RHESSI Workshop, Genova, Italy, Sep
R. P. Lin Physics Dept & Space Sciences Laboratory University of California, Berkeley The Solar System: A Laboratory for the Study of the Physics of Particle.
Solar flares and accelerated particles
Page 1 Cristina Chifor (a) Ken Phillips (b), Brian Dennis (c) a) DAMTP, University of Cambridge, UK b) Mullard Space Science Lab, UK c) NASA/GSFC, Maryland,
M1.0 flare of 22 Oct 2002 RHESSI observations of the M 1.0 solar flare on 22 October 2002 A. Berlicki 1,2, B. Schmieder 1, N. Vilmer 1, G. Aulanier 1 1)
Low-Energy Coronal Sources Observed with RHESSI Linhui Sui (CUA / NASA GSFC)
Hard X-Ray Footpoint Motion in Spectrally Distinct Solar Flares Casey Donoven Mentor Angela Des Jardins 2011 Solar REU.
Super-Hot Thermal Plasmas in Solar Flares
Relations between concurrent hard X-ray sources in solar flares M. Battaglia and A. O. Benz Presented by Jeongwoo Lee NJIT/CSTR Journal Club 2007 October.
RHESSI 2003 October 28 Time Histories Falling fluxes following the peak Nuclear/511 keV line flux delayed relative to bremsstrahlung Fit to 511 keV line.
+ Hard X-Ray Footpoint Motion and Progressive Hardening in Solar Flares Margot Robinson Mentor: Dr. Angela DesJardins MSU Solar Physics Summer REU, 2010.
X-Ray Observation and Analysis of a M1.7 Class Flare Courtney Peck Advisors: Jiong Qiu and Wenjuan Liu.
Working Group 2 - Ion acceleration and interactions.
9th RHESSI Workshop, Sept. 1-5, 2009, Genova On Broken-up Spectra of RHESSI Flares Y. P. Li & W. Q. Gan Purple Mountain Observatory.
Characterizing Thermal and Non- Thermal Electron Populations in Solar Flares Using RHESSI Amir Caspi 1,2, Säm Krucker 2, Robert P. Lin 1,2 1 Department.
RHESSI/GOES Observations of the Non-flaring Sun from 2002 to J. McTiernan SSL/UCB.
RHESSI/GOES Xray Analysis using Multitemeprature plus Power law Spectra. J.McTiernan (SSL/UCB)
Measuring the Temperature of Hot Solar Flare Plasma with RHESSI Amir Caspi 1,2, Sam Krucker 2, Robert P. Lin 1,2 1 Department of Physics, University of.
Statistical Properties of Hot Thermal Plasmas in M/X Flares Using RHESSI Fe & Fe/Ni Line * and Continuum Observations Amir Caspi †1,2, Sam Krucker 2, Robert.
FLARE ENERGETICS:TRACE WHITE LIGHT AND RHESSI HARD X-RAYS* L. Fletcher (U. Glasgow), J. C. Allred (GSFC), I. G. Hannah (UCB), H. S. Hudson (UCB), T. R.
Spectroscopy below ~20 keV Brian Dennis RHESSI/NESSI III 3/30 – 4/01/2005.
Coronal HXR sources a multi-wavelength perspective.
RHESSI/GOES Xray Analysis using Multitemeprature plus Power law Spectra. J.McTiernan (SSL/UCB) ABSTRACT: We present spectral fits for RHESSI and GOES solar.
Search for X-ray emission from coronal electron beams associated with type III radio bursts Pascal Saint-Hilaire, Säm Krucker, Robert P. Lin Space Sciences.
SPD May 25, 2005 RHESSI soft X-ray imaging spectroscopy H. Hudson & A. Caspi (SSL/UCB) And B. Dennis & K. Phillips (NASA/GSFC.
RHESSI observations of LDE flares – extremely long persisting HXR sources Mrozek, T., Kołomański, S., Bąk-Stęślicka, U. Astronomical Institute University.
RHESSI/GOES Observations of the Non-flaring Sun from 2002 to J. McTiernan SSL/UCB.
The Non-Flare Temperature and Emission Measure Observed by RHESSI and SXI J.McTiernan (SSL/UCB) J.Klimchuk (NRL) Fall 2003 AGU Meeting.
RHESSI/NESSIE, June 2003 H.S. Hudson The RHESSI 3-10 keV spectrum H. Hudson, B. Dennis, K. Phillips, R. Schwartz, D. Smith.
Distinguishing Between Thermal and Non-Thermal Electron Populations in Solar Flares Using RHESSI Amir Caspi 1,2, Robert P. Lin 1,2 1 Department of Physics,
GLOBAL ENERGETICS OF FLARES Gordon Emslie (for a large group of people)
Superhot DEM (or DF?) RHESSI continuum with TRACE or EIT FeXXIV, SUMER FeXXI, GOES, or whatever.
Late-phase hard X-ray emission from flares The prototype event (right): March 30, 1969 (Frost & Dennis, 1971), a very bright over-the-limb event with a.
Constraints on Particle Acceleration from Interplanetary Observations R. P. Lin together with L. Wang, S. Krucker at UC Berkeley, G Mason at U. Maryland,
RHESSI/GOES Xray Analysis using Multitemperature plus Power law Spectra. J.McTiernan (SSL/UCB)
Co-spatial White Light and Hard X-ray Flare Footpoints seen above the Solar Limb: RHESSI and HMI observations Säm Krucker Space Sciences Laboratory, UC.
Spatially Resolved Spectral Analysis of Gradual Hardening Flare Takasaki H., Kiyohara J. (Kyoto Univ.), Asai A., Nakajima H. (NRO), Yokoyama T. (Univ.
Flare Thermal Energy Brian Dennis NASA GSFC Solar Physics Laboratory 12/6/20081Solar Cycle 24, Napa, 8-12 December 2008.
Loop-top altitude decrease in an X-class flare A.M. Veronig 1, M. Karlický 2,B. Vršnak 3, M. Temmer 1, J. Magdalenić 3, B.R. Dennis 4, W. Otruba 5, W.
Locarno, 8 June 2005Peter Gallagher (UCD) Chromospheric Evaporation Peter Gallagher University College Dublin Ryan Milligan Queens University Belfast.
5 th RHESSI workshop, Locarno. WG 4 Report Participants: Steven ChristeSäm Krucker Brian DennisMonique Pick Lyndsay FletcherEd Schmahl Peter GallagherManuela.
Lyndsay Fletcher, University of Glasgow Ramaty High Energy Solar Spectroscopic Imager Fast Particles in Solar Flares The view from RHESSI (and TRACE) MRT.
RHESSI and Radio Imaging Observations of Microflares M.R. Kundu, Dept. of Astronomy, University of Maryland, College Park, MD G. Trottet, Observatoire.
1 / 10 Comparison between Microwave and Hard X-ray Spectral Indices of Temporally and Spatially Resolved Non-Thermal Sources Kiyohara, J., Takasaki, H.,
Studies on the 2002 July 23 Flare with RHESSI Ayumi ASAI Solar Seminar, 2003 June 2.
Source sizes and energy partition from RHESSI imaging and spectroscopy Alexander Warmuth Astrophysikalisches Institut Potsdam.
Joint session WG4/5 Points for discussion: - Soft-hard-soft spectral behaviour – again - Non-thermal pre-impulsive coronal sources - Very dense coronal.
Emission measure distribution in loops impulsively heated at the footpoints Paola Testa, Giovanni Peres, Fabio Reale Universita’ di Palermo Solar Coronal.
Determining the Heating Rate in Reconnection Formed Flare Loops Wenjuan Liu 1, Jiong Qiu 1, Dana W. Longcope 1, Amir Caspi 2, Courtney Peck 2, Jennifer.
NON-THERMAL   DISTRIBUTIONS AND THE CORONAL EMISSION J. Dudík 1, A. Kulinová 1,2, E. Dzifčáková 1,2, M. Karlický 2 1 – OAA KAFZM FMFI, Univerzita Komenského,
Spectral Breaks in Flare HXR Spectra A Test of Thick-Target Nonuniform Ionization as an Explanation Yang Su NASA,CUA,PMO Gordon D. Holman.
RHESSI Hard X-Ray Observations of an EUV Jet on August 21, 2003 Lindsay Glesener, Säm Krucker RHESSI Workshop 9, Genova September 4, 2009.
Probing Electron Acceleration with X-ray Lightcurves Siming Liu University of Glasgow 9 th RHESSI Workshop, Genova, Italy, Sep
Energy Budgets of Flare/CME Events John Raymond, J.-Y. Li, A. Ciaravella, G. Holman, J. Lin Jiong Qiu will discuss the Magnetic Field Fundamental, but.
RGS observations of cool gas in cluster cores Jeremy Sanders Institute of Astronomy University of Cambridge A.C. Fabian, J. Peterson, S.W. Allen, R.G.
Characterizing Thermal and Non- Thermal Electron Populations in Solar Flares Using RHESSI Amir Caspi 1,2, Säm Krucker 2, Robert P. Lin 1,2 1 Department.
RHESSI and the Solar Flare X-ray Spectrum Ken Phillips Presentation at Wroclaw Workshop “ X-ray spectroscopy and plasma diagnostics from the RESIK, RHESSI.
Coronal X-ray Emissions in Partly Occulted Flares Paula Balciunaite, Steven Christe, Sam Krucker & R.P. Lin Space Sciences Lab, UC Berkeley limb thermal.
Statistical Properties of Super-Hot Solar Flares Amir Caspi †1*, Säm Krucker 2,3, Robert P. Lin 2,4,5 †
Physics of Solar Flares
Chromospheric and Transition Region Dynamics
Nonthermal Electrons in an Ejecta Associated with a Solar Flare
Summer School High Energy Solar Physics Thermal Radiation
Presentation transcript:

Thermal, Nonthermal, and Total Flare Energies Brian R. Dennis RHESSI Workshop Locarno, Switzerland 8 – 11 June, 2005

Separating Thermal & Nonthermal  Temporal - gradual vs. impulsive  Spatial - coronal vs. footpoint  Spectral - exponential vs. power-law  Spectral – iron-line complexes - always thermal!!!?

Difficulties with Continuum

26 April 2003 Flare Time Profile A0A1A3A1A0 All Detectors ▬ keV ▬ 6 – 12 keV ▬ 12 – 25 keV ▬ 25 – 50 keV Time for spectrum

RHESSI Count-rate Spectrum

Flux ratio vs. Temperature (Caspi & Lin, 2005)

Emissivity vs. Temperature (Caspi & Lin, 2005)

Fe-line Equivalent Width 26 April 2003 CHIANTI Coronal Abundances

Ionization Fraction Antonucci (1987 – SMM/BCS) Mazzotta et al. (1998) Less FeXXV than the calculations predict.

Conclusions  Fe & Fe/Ni complexes are real.  Fe centroid energies vary with T & count rate.  Fe to Fe/Ni ratio varies with T. –Different dependency for different flares.  Fe equivalent width varies with T –Data in A1 attenuator state most reliable. –Up to 50% less FeXXV than Mazzotta et al. predict (Phillips).  Eagerly await XSM spectra for comparison.

Flare vs. CME Energy  Flare thermal energies: –SXR-emitting plasma (GOES & RHESSI) –Radiated energy (GOES) –Conducted energy (GOES & RHESSI) –Total Solar Irradiance increase (SORCE)  Flare nonthermal energies –Electrons from HXRs (Holman) –Ions from gamma-rays (Share)  CME kinetic energy –(LASCO – Gopalswamy)

Thermal Plasma  The thermal energy content of the thermal plasma: U th = 3 n e V kT = 3 k T [EM f V apparent ] 1/2 erg f is the filling factor (assumed to be 1)  Emission measures (EM) and temperatures (T) obtained from both RHESSI and GOES soft X-ray observations.  The source volumes (V) were obtained from RHESSI 12 – 25 keV images V = f V apparent = f A 3/2 A is the area inside the contour at 50% of the peak value.

Figure 1. RHESSI image at the impulsive peak of the 2 Nov flare. Contours: blue: 12 – 25 keV (50%), magenta: 50 – 100 keV (30 & 70%)

Radiated Energy  The energy radiated from the thermal plasma over all wavelengths: L rad = EM f rad (T) ergs s -1  f rad (T) is the Chianti radiative loss function assuming coronal abundances.  Total radiated energy from the flare plasma – L total = n [ L rad (t) * D t ] erg L total = n [ L rad (t) * D t ] erg where the sum is over the duration of the SXR flare.

Figure 2. Radiative losses vs. plasma temperature. Mazzotta et al. (1998) ionization equilibrium Radiative Energy Loss – f rad (erg cm 3 s -1 ) Temperature (K)

Conductive Cooling  The conductive losses – L cond – were estimated assuming classical conduction L cond = A k 0 T 5/2 V T  4 A/ l k 0 T 7/2 erg s -1 where k 0 = erg cm -1 s -1 K -7/2 the classical Spitzer coefficient A is the loop cross-sectional area in cm 2 l is the loop half length. l is the loop half length.  A, l, and T can be determined from RHESSI images.  However, since there is so much uncertainty in estimating this cooling component, no values are included in this analysis.

X8.3 flare 2 Nov GOES SXR Data

Conclusions  Flare and CME energies are correlated for the Oct/Nov 2003 period.  Total Flare and CME energies comparable to within a factor of 10.  Peak energy in SXR-emitting plasma is only ~1% of total flare energy in some cases.  Energy radiated by SXR-emitting plasma is only ~10% of total flare energy in some cases.  Energy in nonthermal electrons and ions can be a large fraction of the total flare energy.  Dominant flare energy in impulsive phase may be electrons and/or ions leading to early peak in total solar irradiance increase seen with SORCE/TIM.  Some of the measured radiant energy of flare may result from a decrease in the opacity of the lower chromosphere caused by a decrease in the H – concentration (Fontenla, private communication).