T. A. Kowalewski A. L. Yarin S. Błoński NANOFIBRES

Slides:



Advertisements
Similar presentations
NEWTONIAN MECHANICS. Kinematic equations Frictional Force.
Advertisements

Electricity and Magnetism
Fluid Properties and Units CEE 331 April 26, 2015 CEE 331 April 26, 2015 
1 Physical principles of nanofiber production 1.Introduction D.Lukáš 2010.
SHINSHU UNIVERSITY Shinshu University Nano Fusion Technology Research Group Study on the poly(1-butene) fibrous membrane via electrospinning Daisuke Kimura.
GENERATION OF PIN-HOLE DISCHARGES IN LIQUIDS František Krčma, Zdenka Kozáková, Michal Vašíček, Lucie Hlavatá, Lenka Hlochová Faculty of Chemistry, Brno.
Drift velocity Adding polyatomic molecules (e.g. CH4 or CO2) to noble gases reduces electron instantaneous velocity; this cools electrons to a region where.
Introduction: Gravitational forces resulting from microgravity, take off and landing of spacecraft are experienced by individual cells in the living organism.
Chemistry 232 Transport Properties.
WOOL KERATIN-BASED NANOFIBRES FOR ACTIVE FILTRATION OF AIR AND WATER A. Aluigi, C.Vineis, A. Varesano, C. Tonetti, C. Tonin, G.Mazzuchetti. 2 nd International.
Electrospinning of hybrid polymers to mimic spider dragline silk Lim Yao Chong HCI ・ Low Rui Hao HCI ・ Tracey Atkinson AOS ・ Patrick Steiner AOS A joint-project.
Introduction The rheology of two different semi-rigid “rod-like” polysaccharides in aqueous solutions, Xanthan gum (XG, Ketrol TF from Kelco) and Scleroglucan.
Instantaneous Fluid Film Imaging in Chemical Mechanical Planarization Daniel Apone, Caprice Gray, Chris Rogers, Vincent P. Manno, Chris Barns, Mansour.
T. A. Kowalewski S. Błoński S. Barral Department of Mechanics and Physics of Fluids Experiments and Modelling of Electrospinning Process.
Monroe L. Weber-Shirk S chool of Civil and Environmental Engineering Fluid Properties and Units CEE 331 June 15, 2015 CEE 331 June 15, 2015 
1 MFGT 242: Flow Analysis Chapter 3: Stress and Strain in Fluid Mechanics Professor Joe Greene CSU, CHICO.
Fluid Properties and Units CVEN 311 . Continuum ä All materials, solid or fluid, are composed of molecules discretely spread and in continuous motion.
Monroe L. Weber-Shirk S chool of Civil and Environmental Engineering Fluid Properties and Units CEE 331 July 12, 2015 
MECHANICAL PROPERTIES OF MATERIALS
Heterogeneous Mixtures
Electrospinning Technique University of Technology
Electrospinning of hybrid polymers to mimic spider dragline silk Lim Yao Chong 4S2 Low Rui Hao 4S2 Tracey Atkinson AOS Patrick Steiner AOS.
Dispersed Systems FDSC Version. Goals Scales and Types of Structure in Food Surface Tension Curved Surfaces Surface Active Materials Charged Surfaces.
Ion Exchanger using Electrospun Polystyrene Nanofibers Research at The University Of Akron H. An, C. Shin and G. G. Chase ABSTRACT In this study, we have.
INSTABILITY MECHANISMS of ELECTRICALLY CHARGED LIQUID JETS in ELECTROSPINNING vs. ELECTROSPRAYING A.L. Yarin Department of Mechanical Eng. UIC, Chicago.
Bouncing Liquid Jets James Bomber, Nick Brewer, and Dr. Thomas Lockhart Department of Physics and Astronomy, University of Wisconsin - Eau Claire
* University of Mining and Metallurgy, AGH Cracow Experimental and Numerical Investigations of Buoyancy Driven Instability in a Vertical Cylinder Tomasz.
Silver / Polystyrene Coated Hollow Glass Waveguides for the Transmission of Visible and Infrared Radiation Carlos M. Bledt a and James A. Harrington a.
Science and Technology of Nano Materials
Physical principles of nanofiber production 7
Advanced Manufacturing Choices
Characterizing and Modeling Mechanical Properties of Biomass Harvesting and Processing Shuai Zhang Ag. And Biological Eng. Dept. Pennsylvania State University.
Dynamics of Capillary Surfaces Lucero Carmona Professor John Pelesko and Anson Carter Department of Mathematics University of Delaware.
Study on Effective Thermal Conduction of the Nanoparticle Suspension Calvin Hong Li Department of Mechanical, Aerospace & Nuclear Engineering Rensselaer.
Scanning Electron Microscopy (SEM) Conclusions  Changing the solvent that PHB-HHx is dissolved in, greatly alters the mechanical properties  Water replaced.
Instabilities of Electrically Forced Jets Moses Hohman (Univ. of Chicago Thoughtworks) Michael Shin (Materials Science, MIT) Greg Rutledge (Chemical Engineering,
Reporter : Chang-Fu Lain Professor: Cheng-Ho Chen Date : 6/11.
Polymer Nanofibers from Recycling of Waste Expanded Polystyrene Research at The University Of Akron C. Shin and G. G. Chase Polymer Nanofibers from Recycling.
A Unified Lagrangian Approach to Solid-Fluid Animation Richard Keiser, Bart Adams, Dominique Gasser, Paolo Bazzi, Philip Dutré, Markus Gross.
Electric Current AP Physics C Montwood High School R.Casao.
Real-Time Polarized Raman Spectroscopy of an Electrospun Polymer Nanofiber John F. Rabolt, University of Delaware, DMR Shown in Figure 1 is the.
Institute of Fundamental Technological Research Polish Academy of Sciences.
Electrospinning: the technique
Polish Academy of Sciences Institute of Fundamental Technological Research Break-up of liquid jet in co-flow experimental.
Physical principles of nanofiber production 1
Bubble Bouncing on Solid/Free Surfaces M.R. Brady, D.P. Telionis – Engineering Science and Mechanics P.P. Vlachos – Mechanical Engineering R.-H. Yoon,
Narrowing the Diameter of Electrospun Nanofibres
Infra-red Technique for Damage Tolerant Sandwich Structures W.Wang 1 J.M.Dulieu-Barton 1, R.K.Fruehmann 1 and C.Berggreen 2 1 Faculty.
1 NUMERICAL AND EXPERIMENTAL STUDIES OF THIN-LIQUID-FILM WALL PROTECTION SCHEMES S.I. ABDEL-KHALIK AND M. YODA G. W. Woodruff School of Mechanical Engineering.
Properties of Droplet Formation made by Cone Jet using a Novel Capillary with an External Electrode Osamu Yogi 1,2, Tomonori Kawakami 2, and Akira Mizuno.
Chemistry 232 Transport Properties. Definitions Transport property. The ability of a substance to transport matter, energy, or some other property along.
A MICRO-AERODYNAMIC DECELERATOR BASED ON PERMEABLE SURFACES OF NANOFIBER MATS by E. Zussman, A.L. Yarin Faculty of Mechanical Engineering Technion – Israel.
Translating High-Throughput Nanofiber Fabrication Techniques for Electroactive Polymer-Protein Hybrid Textile Based Materials Matthew A. Griswold, and.
ELECTROSPINNING OF NANOFIBERS
Mixing Length of Hydrogen in an Air Intake Greg Lilik EGEE 520.
Evidence of anisotropy of small scale turbulence in the laboratory model of an atmospheric cloud P.M. Korczyk, T.A. Kowalewski, S. P. Malinowski IPPT PAN,
Effect Of Applied High Voltage And Flow Rate Parameters On Nanofibers Diameter Determined From Electrospininng Technique Assist .Prof . Dr. Akram R. Jabur,
Advanced Manufacturing Choices
Kalol Institute Of Technical & Research Center
Fyzikální principy tvorby nanovláken 1. Hladinové zvlákňování
Incomplete without class notes
Measurements 17GN1001 Measurement of FORCE and STRAIN
Electromagnetic radiation generated by electrospinning
Pharmaceutical Particles
Electrospinning of Nanofiber for Water Purification Applications
Effect Of Applied High Voltage And Flow Rate Parameters On Nanofibers Diameter Determined From Electrospininng Technique Assist .Prof . Dr. Akram R. Jabur,
I International workshop on electro-hydro-dynamics
Polymer Nanofibers from Recycling of Waste Expanded Polystyrene
P2 summary Resultant force = overall forced
Graduate School of Engineering, Shinshu University
Presentation transcript:

T. A. Kowalewski A. L. Yarin S. Błoński NANOFIBRES Institute of Fundamental Technological Research Polish Academy of Sciences & Department of Mechanical Engineering Technion - Israel Institute of Technology T. A. Kowalewski A. L. Yarin S. Błoński NANOFIBRES by electro-spinning of polymer solution

Nanofibres background Nanofibres properties Increase of the surface to volume ratio -> solar and light sails and mirrors in space Reduction of characteristic dimension -> nano-biotechnology, tissue engineering, chemical catalysts, electronic devices Bio-active fibres: catalysis of tissue cells growth Mechanical properties improvement -> new materials and composite materials by alignment in arrays and ropes Nanofibres production: Air-blast atomisation Pulling from melts Electrospinning of polymer solutions NANOFIBRES T. A. Kowalewski, A. L. Yarin & S. Błoński, EFMC 2003, Toulouse

Classical liquid jet  0.1mm  Orifice – 0.1mm Primary jet diameter ~ 0.2mm Micro-jet diameter ~ 0.005mm Gravitational, mechanical or electrostatic pulling limited to l/d ~ 1000 by capillary instability To reach nano-range: jet thinning ~10-3 draw ratio ~106 ! NANOFIBRES T. A. Kowalewski, A. L. Yarin & S. Błoński, EFMC 2003, Toulouse

Electro-spinning v=0.1m/s E ~ 105V/m moving charges e bending force on charge e E ~ 105V/m viscoelastic and surface tension resistance Moving charges (ions) interacting with electrostatic field amplify bending instability, surface tension and viscoelasticity counteract these forces NANOFIBRES T. A. Kowalewski, A. L. Yarin & S. Błoński, EFMC 2003, Toulouse

Electro-spinning bending instability of electro-spun jet E ~ 105V/m charges moving along spiralling path E ~ 105V/m Bending instability enormously increases path of the jet, allowing to solve problem: how to decrease jet diameter 1000 times or more without increasing distance to tenths of kilometres NANOFIBRES T. A. Kowalewski, A. L. Yarin & S. Błoński, EFMC 2003, Toulouse

Simple model for elongating viscoelastic thread Electro-spinning Simple model for elongating viscoelastic thread Stress balance:  - viscosity, G – elastic modulus stress,  stress tensor, dl/dt – thread elongation Momentum balance: Vo – voltage, e – charge, a – thread radius, h- distance pipette-collector Kinematic condition for thread velocity v Non-dimensional length of the thread as a function of electrostatic potential NANOFIBRES T. A. Kowalewski, A. L. Yarin & S. Błoński, EFMC 2003, Toulouse

Nanofibres – basic setup liquid jet ~ 105 Volt/m NANOFIBRES T. A. Kowalewski, A. L. Yarin & S. Błoński, EFMC 2003, Toulouse

Nanofibres – howto? Viscoelastic fluid: Dilute solution (4 – 6)% of polyethylene oxide (molar weight 4.105 g/mol), in 40% ethanol –water solvent Electrostatic field high voltage power supply (5-30kV) plastic syringe metal grid to collect fibres Visualization high speed camera (4000 – 40000 fps) high resolution „PIV” camera (1280x1024pixels) CW Argon laser, double pulse Nd:Yag laser, projection lens NANOFIBRES T. A. Kowalewski, A. L. Yarin & S. Błoński, EFMC 2003, Toulouse

Nanofibres – basic setup NANOFIBRES T. A. Kowalewski, A. L. Yarin & S. Błoński, EFMC 2003, Toulouse

Nanofibres collection NANOFIBRES T. A. Kowalewski, A. L. Yarin & S. Błoński, EFMC 2003, Toulouse

Nanofibres collection NANOFIBRES T. A. Kowalewski, A. L. Yarin & S. Błoński, EFMC 2003, Toulouse

Electrospinning observed at 30fps Average velocity of the fibres: 2 m/s 5 cm NANOFIBRES T. A. Kowalewski, A. L. Yarin & S. Błoński, EFMC 2003, Toulouse

Electrospinning observed at 4500fps 0.0 ms 8.9 ms 17.8 ms 26.7 ms 35.6 ms 44.4 ms 53.3 ms 62.2 ms 71.1 ms 80.0 ms NANOFIBRES T. A. Kowalewski, A. L. Yarin & S. Błoński, EFMC 2003, Toulouse

Electrospinning observed at 4500fps Average velocity of the fibre: 2 m/s 5 cm NANOFIBRES T. A. Kowalewski, A. L. Yarin & S. Błoński, EFMC 2003, Toulouse

Electrospinning Collected nanofibres ------------ 10 mm ---------------  -0.1 mm- NANOFIBRES T. A. Kowalewski, A. L. Yarin & S. Błoński, EFMC 2003, Toulouse

Electron microscopy PEO nanofibres NANOFIBRES T. A. Kowalewski, A. L. Yarin & S. Błoński, EFMC 2003, Toulouse

Failure modes 0.5 mm NANOFIBRES T. A. Kowalewski, A. L. Yarin & S. Błoński, EFMC 2003, Toulouse

Parametric study Model validation varying following parameters: L – length of the rectilinear part  – angle of the envelope cone (image analysis) U – velocity of the fibre by PIV method a – fibre diameter (image analysis) structure of collected woven (failure modes) elongation strength of single fibre measured by air jet Effect of Electrostatic potential V Distance pipette-collector H Solution concentration c Distance from the pipette x L  H NANOFIBRES T. A. Kowalewski, A. L. Yarin & S. Błoński, EFMC 2003, Toulouse

Parametric study PIV cross – correlation t = 500 s image 2 t + t image 1 concentration of PEO: 3% Voltage: 8 kV H = 215 mm polymer solution with the addition of fluorescent particles (0.3m polymer microspheres) light source: Nd:Yag laser Average velocity of the fibres: 2 m/s NANOFIBRES T. A. Kowalewski, A. L. Yarin & S. Błoński, EFMC 2003, Toulouse

Tested polymers Test Polymer Solvent Concentration Voltage [kV] Electrospinning I PEO Polyethylene-oxide 40% water – ethanol solution 3 – 4 % 3 – 12 good and stable process for voltage up to 10kV II DBC* Ethanol 2-29% 6 – 16 fairly good III TAC* 7-30 % 3 – 30 polymer too viscous 1-7 % 10 – 30 difficult IV PAN* DMF 1-25 % 5 – 25 very good *Prepared at Technical University of Łódź by dr Anna Błasińska NANOFIBRES T. A. Kowalewski, A. L. Yarin & S. Błoński, EFMC 2003, Toulouse

Parametric study Polymer: PEO  Concentration: c=3% H Polymer: PEO Concentration: c=3% Solvent: 40% water- ethanol solution H=215mm V=8kV L (t) – instability of length of the rectilinear part NANOFIBRES T. A. Kowalewski, A. L. Yarin & S. Błoński, EFMC 2003, Toulouse

Parametric study Polymer: PEO  Concentration: c=4% H Polymer: PEO Concentration: c=4% Solvent: 40% water- ethanol solution H=215mm L (V) – length of the rectilinear part  (V) – angle of the envelope cone NANOFIBRES T. A. Kowalewski, A. L. Yarin & S. Błoński, EFMC 2003, Toulouse

Parametric study Polymer: PEO  Concentration: c=4% H Polymer: PEO Concentration: c=4% Solvent: 40% water- ethanol solution H=215mm U(V) – velocity of the fibre at the rectilinear part NANOFIBRES T. A. Kowalewski, A. L. Yarin & S. Błoński, EFMC 2003, Toulouse

Electrospinning observed at 25fps Polymer: DBC Concentration: c=9% Solvent: ethanol H=215mm V=6kV 12 cm NANOFIBRES T. A. Kowalewski, A. L. Yarin & S. Błoński, EFMC 2003, Toulouse

Different structure of spinning fibres for DBC polymer U=6kV U=12kV DBC: c=9% H=215mm NANOFIBRES T. A. Kowalewski, A. L. Yarin & S. Błoński, EFMC 2003, Toulouse

Parametric study Polymer: DBC  Concentration: c=9% Solvent: ethanol H=215mm L (V) – length of the rectilinear part  (V) – angle of the envelope cone NANOFIBRES T. A. Kowalewski, A. L. Yarin & S. Błoński, EFMC 2003, Toulouse

Electrospinning observed at 25fps Polymer: PAN Concentration: c=15% Solvent: DMF H=215mm V=13kV 12 cm NANOFIBRES T. A. Kowalewski, A. L. Yarin & S. Błoński, EFMC 2003, Toulouse

Different structure of spinning fibres for PAN polymer U=13kV U=19kV PAN: c=15% H=215mm NANOFIBRES T. A. Kowalewski, A. L. Yarin & S. Błoński, EFMC 2003, Toulouse

Parametric study Polymer: PAN  Concentration: c=15% Solvent: DMF H Polymer: PAN Concentration: c=15% Solvent: DMF H=215mm L (V) – length of the rectilinear part  (V) – angle of the envelope cone NANOFIBRES T. A. Kowalewski, A. L. Yarin & S. Błoński, EFMC 2003, Toulouse

Comparison of PEO & DBC &PAN polymers L (V) – length of the rectilinear part  (V) – angle of the envelope cone NANOFIBRES T. A. Kowalewski, A. L. Yarin & S. Błoński, EFMC 2003, Toulouse

Conclusions Electrostatic elongation of polymer threads allows to produce relatively easily fibres in nano range diameters Collection of nano-woven of bio-active polymers, e.g.. chitin may have practical application for tissue growth Electrospinning of polymer solutions still lacks detailed mathematical model, necessary to perform process optimisation NANOFIBRES T. A. Kowalewski, A. L. Yarin & S. Błoński, EFMC 2003, Toulouse

Acknowledgements We would like to acknowledge the valuable contribution of dr Anna Błasińska from TU of Łódź and Anna Blim from IPPT PAN in the work presented. The work was partly supported by the Centre of Excellence AMAS of the IPPT PAN NANOFIBRES T. A. Kowalewski, A. L. Yarin & S. Błoński, EFMC 2003, Toulouse