Ferromagnetic Semiconductors Gergely Zaránd Budapest Univ. Technology Collaborators: Greg Fiete (Santa Barbara) Boldizsár Jankó (Notre Dame) Pawel Redlinski.

Slides:



Advertisements
Similar presentations
Anderson localization: from single particle to many body problems.
Advertisements

Iron pnictides: correlated multiorbital systems Belén Valenzuela Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) ATOMS 2014, Bariloche Maria José.
Jairo Sinova (TAMU) Challenges and chemical trends in achieving a room temperature dilute magnetic semiconductor: a spintronics tango between theory and.
Some interesting physics in transition metal oxides: charge ordering, orbital ordering and spin-charge separation C. D. Hu Department of physics National.
Topics in Condensed Matter Physics Lecture Course for graduate students CFIF/Dep. Física Spin-dependent transport theory Vitalii Dugaev Winter semester:
D-wave superconductivity induced by short-range antiferromagnetic correlations in the Kondo lattice systems Guang-Ming Zhang Dept. of Physics, Tsinghua.
Apoio: Esta apresentação pode ser obtida do site seguindo o link em “Seminários, Mini-cursos, etc.” Hole concentration.
Diluted Magnetic Semiconductors Diluted Magnetic Semoconductor (DMS) - A ferromagnetic material that can be made by doping of impurities, especially transition.
Karel Výborný, Jan Zemen, Kamil Olejník, Petr Vašek, Miroslav Cukr, Vít Novák, Andrew Rushforth, R.P.Campion, C.T. Foxon, B.L. Gallagher, Tomáš Jungwirth.
Spintronics and Magnetic Semiconductors Joaquín Fernández-Rossier, Department of Applied Physics, University of Alicante (SPAIN) Alicante, June
4. Disorder and transport in DMS, anomalous Hall effect, noise
Phase separation in strongly correlated electron systems with Jahn-Teller ions K.I.Kugel, A.L. Rakhmanov, and A.O. Sboychakov Institute for Theoretical.
Superconductivity in Zigzag CuO Chains
The Persistent Spin Helix Shou-Cheng Zhang, Stanford University Banff, Aug 2006.
Chaos and interactions in nano-size metallic grains: the competition between superconductivity and ferromagnetism Yoram Alhassid (Yale) Introduction Universal.
Spintronics = Spin + Electronics
Spin transport in spin-orbit coupled bands
Ab initio study of the diffusion of Mn through GaN Johann von Pezold Atomistic Simulation Group Department of Materials Science University of Cambridge.
UCSD. Tailoring spin interactions in artificial structures Joaquín Fernández-Rossier Work supported by and Spanish Ministry of Education.
Glassy dynamics of electrons near the metal-insulator transition in two dimensions Acknowledgments: NSF DMR , DMR , NHMFL; IBM-samples; V.
Quasiparticle anomalies near ferromagnetic instability A. A. Katanin A. P. Kampf V. Yu. Irkhin Stuttgart-Augsburg-Ekaterinburg 2004.
The Persistent Spin Helix Shou-Cheng Zhang, Stanford University Les Houches, June 2006.
Relaziation of an ultrahigh magnetic field on a nanoscale S. T. Chui Univ. of Delaware
Spin Hall Effect induced by resonant scattering on impurities in metals Peter M Levy New York University In collaboration with Albert Fert Unite Mixte.
The spinning computer era Spintronics Hsiu-Hau Lin National Tsing-Hua Univ.
School of Physics and Astronomy, University of Nottingham, UK
Quantum conductance I.A. Shelykh St. Petersburg State Polytechnical University, St. Petersburg, Russia International Center for Condensed Matter Physics,
Heavy Fermions Student: Leland Harriger Professor: Elbio Dagotto Class: Solid State II, UTK Date: April 23, 2009.
Dissipationless quantum spin current at room temperature Shoucheng Zhang (Stanford University) Collaborators: Shuichi Murakami, Naoto Nagaosa (University.
Optical Properties of Ga 1-x Mn x As C. C. Chang, T. S. Lee, and Y. H. Chang Department of Physics, National Taiwan University Y. T. Liu and Y. S. Huang.
Berry Phase Effects on Bloch Electrons in Electromagnetic Fields
Model for ferromagnetism in d 0 materials.  Introduction.  Model for «d 0 » ferromagnetism.  Magnetic exchange couplings and treatment of the effective.
● Problem addressed: Mn-doped GaAs is the leading material for spintronics applications. How does the ferromagnetism arise? ● Scanning Tunneling Microscopy.
NAN ZHENG COURSE: SOLID STATE II INSTRUCTOR: ELBIO DAGOTTO SEMESTER: SPRING 2008 DEPARTMENT OF PHYSICS AND ASTRONOMY THE UNIVERSITY OF TENNESSEE KNOXVILLE.
Getting FM in semiconductors is not trivial. Recall why we have FM in metals: Band structure leads to enhanced exchange interactions between (relatively)
Ferromagnetic semiconductors for spintronics Kevin Edmonds, Kaiyou Wang, Richard Campion, Devin Giddings, Nicola Farley, Tom Foxon, Bryan Gallagher, Tomas.
Colossal Magnetoresistance of Me x Mn 1-x S (Me = Fe, Cr) Sulfides G. A. Petrakovskii et al., JETP Lett. 72, 70 (2000) Y. Morimoto et al., Nature 380,
Magnetism in ultrathin films W. Weber IPCMS Strasbourg.
Magnetic property of dilute magnetic semiconductors Yoshida lab. Ikemoto Satoshi K.Sato et al, Phys, Rev.B
DMS: Basic theoretical picture
Berry Phase Effects on Electronic Properties
Electronic and Magnetic Structure of Transition Metals doped GaN Seung-Cheol Lee, Kwang-Ryeol Lee, Kyu-Hwan Lee Future Technology Research Division, KIST,
 Magnetism and Neutron Scattering: A Killer Application  Magnetism in solids  Bottom Lines on Magnetic Neutron Scattering  Examples Magnetic Neutron.
Complexity in Transition-Metal Oxides and Related Compounds A. Moreo and E. Dagotto Univ. of Tennessee, Knoxville (on leave from FSU, Tallahassee) NSF-DMR
FZU Comparison of Mn doped GaAs, ZnSe, and LiZnAs dilute magnetic semiconductors J.Mašek, J. Kudrnovský, F. Máca, and T. Jungwirth.
Jeroen van den Brink Bond- versus site-centred ordering and possible ferroelectricity in manganites Leiden 12/08/2005.
Drude weight and optical conductivity of doped graphene Giovanni Vignale, University of Missouri-Columbia, DMR The frequency of long wavelength.
Wigner-Mott scaling of transport near the two-dimensional metal-insulator transition Milos Radonjic, D. Tanaskovic, V. Dobrosavljevic, K. Haule, G. Kotliar.
Hall effect and conductivity in the single crystals of La-Sr and La-Ba manganites N.G.Bebenin 1), R.I.Zainullina 1), N.S.Chusheva 1), V.V.Ustinov 1), Ya.M.Mukovskii.
The Helical Luttinger Liquid and the Edge of Quantum Spin Hall Systems
Stefano Sanvito Physics Department, Trinity College, Dublin 2, Ireland TFDOM-3 Dublin, 11th July 2002.
Helical Spin Order in SrFeO 3 and BaFeO 3 Zhi Li Yukawa Institute for Theoretical Physics (YITP) Collaborator: Robert Laskowski (Vienna Univ.) Toshiaki.
전이금속이 포함된 GaN의 전자구조 및 자기적 특성해석
Unbiased Numerical Studies of Realistic Hamiltonians for Diluted Magnetic Semiconductors. Adriana Moreo Dept. of Physics and ORNL University of Tennessee,
Anisotropic exactly solvable models in the cold atomic systems Jiang, Guan, Wang & Lin Junpeng Cao.
Superconductivity with T c up to 4.5 K 3d 6 3d 5 Crystal field splitting Low-spin state:
O AK R IDGE N ATIONAL L ABORATORY U. S. D EPARTMENT OF E NERGY Electronically smectic-like phase in a nearly half-doped manganite J. A. Fernandez-Baca.
Some physical properties of disorder Blume-Emery-Griffiths model S.L. Yan, H.P Dong Department of Physics Suzhou University CCAST
First Principle Design of Diluted Magnetic Semiconductor: Cu doped GaN
Complex magnetism of small clusters on surfaces An approach from first principles Phivos Mavropoulos IFF, Forschungszentrum Jülich Collaboration: S. Lounis,
Berry Phase and Anomalous Hall Effect Qian Niu University of Texas at Austin Supported by DOE-NSET NSF-Focused Research Group NSF-PHY Welch Foundation.
Magnetic properties of (III,Mn)As diluted magnetic semiconductors
Flat Band Nanostructures Vito Scarola
Quantum spin Hall effect Shoucheng Zhang (Stanford University) Collaborators: Andrei Bernevig, Congjun Wu (Stanford) Xiaoliang Qi (Tsinghua), Yongshi Wu.
Correlation in graphene and graphite: electrons and phonons C. Attaccalite, M. Lazzeri, L. Wirtz, F. Mauri, and A. Rubio.
Dec , 2005 The Chinese University of Hong Kong
Some open questions from this conference/workshop
Qian Niu 牛谦 University of Texas at Austin 北京大学
Spin-orbit interaction in a dual gated InAs/GaSb quantum well
S.-C. Lee*, K.-R. Lee, and K.-H. Lee Computational Science Center
Presentation transcript:

Ferromagnetic Semiconductors Gergely Zaránd Budapest Univ. Technology Collaborators: Greg Fiete (Santa Barbara) Boldizsár Jankó (Notre Dame) Pawel Redlinski (Notre Dame) Jacek Furdyna (Notre Dame) Pascu Moca Catalin (Nagyvarad/Oradea)

Introduction / Motivation (Ga,Mn)As and its simple picture (Ga,Mn)As in reality band structure + SO coupling impurity band formation frustration effects localization effects Outline

Motivation: Combine semiconductor technology with MAGNETISM Control magnetism through electricity (e.g., write bits through electric current) transfer information through spin current ? Spin-base quantum computation ????.... Physics: “Spintronics”: localization + magnetism… anomalous Hall effect… strong spin-orbit effects…

Difficulty: III-V: low solubility of Mn ions … Solution: Annealing methods [Hayashi et al., APL 78, 1691 (2001),…] Wang et al., AIP Conf. Proc. 772, 333 (2005) Low-temperature growth of (Ga,Mn)As [Ohno, Science 281, 951 (1998)] Goal: produce a semiconductor that can be integrated with standard technology and is a soft magnet, but has high T C

III-V Materials Carrier-mediated ferromagnetism ??????

Examples of applications [Ruester et al. PRL 91, (2003)] Spin polarized light emitting diode [R. Fiederling et al., Nature 402, 787 (1999)] Field effect control of ferromagnetism [H. Ohno et al., Nature 408, 944 (2000)] Light induced ferromagnetism [Koshihara et al., PRL 78, 1019 (2000)]

(Ga,Mn)As: The simplest picture

Mn ions Mn Ga replace Ga ions Crystal structure + Mn ions Many holes in it … !!!

Mn ions Mn Ga replace Ga ions Crystal structure + Mn ions Many holes in it … !!! Mn ions Mn Ga replace Ga ions Mn I sit in holes…

Good Mn Ga ions Mn Ga ions: gives SPIN: S = 5/2, g=2 d 5 configuration dopes hole negatively charged (strong scatterer!!!) couples antiferromagnetically to holes Sea of happy holes

Bad Mn I ions Kill Mn Ga spins ! take away 2 holes ! expands lattice positively charged Bind to Mn Ga ions ! [Jungwirth et al. PRB 72, (2005)] Sea of (partially) happy holes One can anneal them away !

One can anneal away ! Annealing [Potashnik et al. APL 79, 1495 (2001)]

Simplest model Scaling not satisfied experimentally (exchange corrections, spin fluctuations, disorder …) Mean field theory (neglecting disorder): [Dietl et al. Science 287, 1019 (2000); Konig et al. PRL 84, 5628 (2000)]

(Ga,Mn)As: The reality

Complications Several p-bands complicated band structure Large spin-orbit coupling magnetic anisotropies, spin relaxation etc. Very large disorder localization effects, impurity band, acceptor states Random spin positions Large electron-electron interaction

Band structure and SO coupling

Electron structure I s ( l = 0 ) p ( l = 1 ) s ( l = 0 ) j = 3/2 hopping SO- coupling p ( l = 1 ) j = 1/2 j = 3/2 j = 1/2 valence band conduction band 8 e -

[J.S. Blakemore, J. Appl. Phys. 53, R123 (1982)] Strong spin-orbit interaction Holes have spin j=3/2 character GaMnAs is degenerate Fermi system Electron structure of GaAs: SO effects

Cubic symmetry determines Luttinger parameters [J.M. Luttinger, W. Kohn, PR 97, 869 (1955)] Holes have J = 3/2 spin that couples strongly to their orbital motion: Kohn-Luttinger Hamiltonian

Approximate: Eigenstates are chiral: n heavy hole ≈ 10 n light hole [A. Baldereschi and N.O. Lipari, Phys. Rev. B 8, 2697 (1973)] SU(2) invariant Spherical approximation

Dilute limit

Single Mn ion Hamiltonian: Spectrum for: Valence holes Localized hole with spin J=3/2

For: Mn spin and couple to form a spin triplet

Polaron hopping picture : [Berciu, M., and R. N. Bhatt, PRL. 87, (2002); G. Fiete, GZ, K. Damle, PRL 91, (2003); Kaminski, A., and S. Das Sarma, Phys. Rev. Lett. 88, (2002); Durst, A. C., R. N. Bhatt, and P. A. Wolff, PRB 65, (2002)]

Study Mn2 ion Energy shift Spin-dependent hopping Local spin-anisotropy for holes Obtain effective Hamiltonian (spherical approx): Compute low-lying spectrum of 2 Mn ions [P. Redlinski, GZ, B Janko, cond-mat/ ; G. Fiete, GZ, K. Damle, PRL 91, (2003)]

Computed parameters:

Hopping F=3/2 fermions coupled to local classical spins: Spin-hopping direction coupled matrix elements: diagonal matrix spin 3/2 rotation matrix Minimum model (dilute limit)

Band structure of a relaxed Mn system ( x active =0.01, f=0.1 ) Impurity band in small concentration limit ARPES: H. Asklund, et al., PRB 66, (2002). J. Okabayashi, et al. PR B 64, (2001); Physica E 10, 192 (2001). STM: B. Grandidier, et al., APL 77, 4001 (2000); T. Tsuruoka, et al. APL 81, 2800 (2002); OPTICAL CONDUCTIVITY : E. J. Singley, et al PRL, 89, (2002); Phys. Rev. B 68, (2003). ELLIPSOMETRY: K. S. Burch, et al. PRB 70, (2004). ( x active < 0.01 )

Non-collinear magnetic states ( x active =0.01, f=0.3 ) [G. Fiete, G.Z., and K. Damle, 2003, PRL 91, (2003)] Distribution of angles [see, e.g. : B. Grandidier, et al. APL 77, 4001 (2000).] Experiments: small fields induce substantial increase of magnetization in small concentration unannealed samples

Metallic limit

RKKY interaction: non-collinear states ? Neglect disorder, and compute effective spin-spin interaction [GZ, and B. Janko, PRL 89, (2002)] Non-collinear States ?

RKKY interaction [Brey, L., and G. Gomez-Santos, PRB 68, (2003); G. Fiete, GZ, B. Janko, et al., PR B 71, (2005); Timm, C., and A. H. MacDonald, PRB 71, (2005)] Almost collinear states for x > 0.03

Ab initio calculations [G. Bouzerar, G., T. Ziman, and J. Kudrnovsky, Europhys. Lett. 69, 812 (2005)] Bergqvist, et al. PRL 93, (2004); Hilbert, S., and W. Nolting, PR B 71, (2005); Xu, J. L., M. van Schilfgaarde, and G. D. Samolyuk, PRL 94, (2005); G. Bouzerar, G., T. Ziman, and J. Kudrnovsky, Europhys. Lett. 69, 812 (2005)

Transport properties

Resistivity anomalies in GaMnAs data from P. Schiffer’s group Sea also Potashnik et al., APL 79, 1495 (2001) Matsukura et al., PRB 57, R2037 (1998) Edmonds et al, APL 81, 4991 (2002)

Possible explanations for the peak? Critical fluctuations ? Magnetic polarons ? [Kasuya, Dietl and Spalek, P. Littlewood] Selfconsistent potantials ? [Nagaev’s theory] Only a kink at T C [Fischer-Langer] Maximum way above TC [P. Littlewood] Curves cross… “Spin disorder scattering” Diverges at T C … None of these works …

Proposal: Interplay of magnetization and localization Interplay with localization produces peak at Magnetic-ordering decreases effective disorder Resistance changes at microscopic scale [Similar ideas emerged for Manganites [Viret et al. PRB 55, 8067 (1997)] There Jahn-Teller effect provides localization Some conceptual difficulties ] [GZ, P. Moca, and B. Janko, PRL 94, (2005).]

Influence of spin on disorder: possible mechanisms Static spins, double exchange mechanism Spin splitting of bands [Lopez-Sancho and Brey, PRB 68, (2003)] Interference between magnetic and static scattering [Csontos et al, Nature Mat. 2005]

We need to know Metallic Phase: Finite conductivity Mott’s variable range formula Insulating Phase:

Single parameter scaling theory of localization (T=0) Typical dimensionless conductance of slab ~ L

Spin distribution changes disorder ! Insulator: Metal:

Beta function, Phase diagram To compute we need to solve a differential equation beta function extracted from model calculations [GZ, P. Moca, and B. Janko, PRL 94, (2005).]

Experimentally observed anomalies, localized fits GaMnAs data from P. Schiffer’s group Some fine-tuning is needed to fit the metallic data through variable range hopping [GZ, P. Moca, and B. Janko, PRL 94, (2005).]

Fitting through metallic expression [GZ, P. Moca, and B. Janko, PRL 94, (2005), and unpublished]

Best fit! More fits… Experiments on (Ga,Mn)As metal rings find similar behavior ! K. Wagner, et al. PRL 97, (2006)

Conclusions General review, GaMnAs: Jungwirth et al. cond-mat/ Carrier-mediated mechanism in GaMnAs: Dietl, T., 2003, condmat/ First principles calculations Sanvito, S., G. Theurich, and N. A. Hill, Journal of Superconductivity 15, 85 (2002); Sato, K., and H. Katayama-Yoshida, Semicond. Sci. Technol. 17, 367 (2002) II-VI materials Furdyna, J. K., and J. Kossut, Diluted Magnetic Semiconductors, volume 25 of Semiconductor and Semimetals (Academic Press, New York, 1988). Spintronics Zutic, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. 76, 323 (2004). REVIEWS:

Transfer matrix / scaling analysis of Lyapunov exponents Lyapunov exponent Single parameter scaling: slabs Universal function Microscopic length scale

Single parameter scaling theory of localization II Consider a slab of size and conductance increases as we increase decreases as we increase

Test these ideas for a toy model Disordered Kondo lattice: Take+ classical spins Spins at mean field level Transfer Matrix Analysis (MacKinnon and Kramers, PRL, 1981) [Similar analysis in the context of manganites: Li et al., PRB 56, 4541 (1997)]

Beta function, Phase diagram