1 Introduction

Slides:



Advertisements
Similar presentations
Numbers Treasure Hunt Following each question, click on the answer. If correct, the next page will load with a graphic first – these can be used to check.
Advertisements

1 A B C
Chapter 4 Sampling Distributions and Data Descriptions.
Variations of the Turing Machine
Adders Used to perform addition, subtraction, multiplication, and division (sometimes) Half-adder adds rightmost (least significant) bit Full-adder.
AP STUDY SESSION 2.
1
Copyright © 2003 Pearson Education, Inc. Slide 1 Computer Systems Organization & Architecture Chapters 8-12 John D. Carpinelli.
1 Copyright © 2013 Elsevier Inc. All rights reserved. Chapter 4 Computing Platforms.
Copyright © 2011, Elsevier Inc. All rights reserved. Chapter 6 Author: Julia Richards and R. Scott Hawley.
Author: Julia Richards and R. Scott Hawley
Myra Shields Training Manager Introduction to OvidSP.
Properties Use, share, or modify this drill on mathematic properties. There is too much material for a single class, so you’ll have to select for your.
Port group model in G.8021 Akira Sakurai G.8021 Co-editor IEEE and ITU-T Q.9/15 Ethernet Transport issues (Geneva, 27 May 2010)
1 Introduction vid-filtering-0710-v04.pdfhttp://
UNITED NATIONS Shipment Details Report – January 2006.
1 Hyades Command Routing Message flow and data translation.
David Burdett May 11, 2004 Package Binding for WS CDL.
1 Introducing the Specifications of the Metro Ethernet Forum MEF 19 Abstract Test Suite for UNI Type 1 February 2008.
1 RA I Sub-Regional Training Seminar on CLIMAT&CLIMAT TEMP Reporting Casablanca, Morocco, 20 – 22 December 2005 Status of observing programmes in RA I.
Custom Statutory Programs Chapter 3. Customary Statutory Programs and Titles 3-2 Objectives Add Local Statutory Programs Create Customer Application For.
1 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt BlendsDigraphsShort.
Programming Language Concepts
1 Click here to End Presentation Software: Installation and Updates Internet Download CD release NACIS Updates.
Version 1.0 digitaloffice.intel.com Intel ® vPro Technology Intel ® Active Management Technology Setup and Configuration HP Laptop – Compaq 6910p Small.
Break Time Remaining 10:00.
Turing Machines.
Table 12.1: Cash Flows to a Cash and Carry Trading Strategy.
Chapter 1: Introduction to Scaling Networks
PP Test Review Sections 6-1 to 6-6
1 The Blue Café by Chris Rea My world is miles of endless roads.
Bright Futures Guidelines Priorities and Screening Tables
EIS Bridge Tool and Staging Tables September 1, 2009 Instructor: Way Poteat Slide: 1.
Health Artifact and Image Management Solution (HAIMS)
Bellwork Do the following problem on a ½ sheet of paper and turn in.
CS 6143 COMPUTER ARCHITECTURE II SPRING 2014 ACM Principles and Practice of Parallel Programming, PPoPP, 2006 Panel Presentations Parallel Processing is.
Exarte Bezoek aan de Mediacampus Bachelor in de grafische en digitale media April 2014.
1 DRNI Examples and DAS position Maarten Vissers Version 01.
Sample Service Screenshots Enterprise Cloud Service 11.3.
Copyright © 2012, Elsevier Inc. All rights Reserved. 1 Chapter 7 Modeling Structure with Blocks.
1 RA III - Regional Training Seminar on CLIMAT&CLIMAT TEMP Reporting Buenos Aires, Argentina, 25 – 27 October 2006 Status of observing programmes in RA.
Basel-ICU-Journal Challenge18/20/ Basel-ICU-Journal Challenge8/20/2014.
1..
Graphs, representation, isomorphism, connectivity
CONTROL VISION Set-up. Step 1 Step 2 Step 3 Step 5 Step 4.
© 2012 National Heart Foundation of Australia. Slide 2.
Adding Up In Chunks.
MaK_Full ahead loaded 1 Alarm Page Directory (F11)
1 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt Synthetic.
1 hi at no doifpi me be go we of at be do go hi if me no of pi we Inorder Traversal Inorder traversal. n Visit the left subtree. n Visit the node. n Visit.
Analyzing Genes and Genomes
Systems Analysis and Design in a Changing World, Fifth Edition
Speak Up for Safety Dr. Susan Strauss Harassment & Bullying Consultant November 9, 2012.
©Brooks/Cole, 2001 Chapter 12 Derived Types-- Enumerated, Structure and Union.
Essential Cell Biology
Converting a Fraction to %
Clock will move after 1 minute
Connecting LANs, Backbone Networks, and Virtual LANs
Intracellular Compartments and Transport
PSSA Preparation.
Essential Cell Biology
Immunobiology: The Immune System in Health & Disease Sixth Edition
Physics for Scientists & Engineers, 3rd Edition
Energy Generation in Mitochondria and Chlorplasts
Select a time to count down from the clock above
Murach’s OS/390 and z/OS JCLChapter 16, Slide 1 © 2002, Mike Murach & Associates, Inc.
1.step PMIT start + initial project data input Concept Concept.
1 Introduction filtering-0710-v04.pdfhttp://
Introduction Multi (e.g. 2) domain E-LAN example
Presentation transcript:

1 Introduction describes in pages 19 and 20 the Optimal distribution of data: Non-802.1aq and Using VIDs for manually configured optimum data distribution The following slides expand the description in those two pages with Multi (e.g. 2) domain E-LAN example 1 root and 2 roots E-Tree examples Internal node configuration details for E-LAN and E-Tree cases, including Relay VIDs and switch configurations Egress filtering Egress and ingress VID translation, Per domain local VID values Per link local VID values (used in transport networks) Primary VID values in MEPs and MIPs v02 adds some E-Tree cases, corrections of some mistakes in v01, an evaluation of UP and Down MEP/MIP primary VID values and support of those multi-VID models in G.8021 v03 includes some corrections in the B1 and B2 node expansion figures on slides 5,17,20,26 v04 includes G.8021 functional models for nodes B1 to B5 for E-LAN, 2 nd type E-Tree, 3 rd type E-Tree and 4 th type E-Tree in slides 31 to 43; while developing those slides it was noticed that it is possible to enhance the egress filtering for the 2 nd, 3 rd and 4 th E-Tree cases; this is also reflected in slides 14-15, and In addition, interworking cases between nodes with split-horizon port group designs and nodes with multi-vid designs for E-LAN and 2 nd type E-Tree are illustrated in slides

2 Configuration of I and V relay- VIDs, local VIDs, egress filtering and VID translation Internal configuration of node B1 with the E-LAN FID including the I and V relay-VID learning and forwarding processes and VID translation at the egress ports B1 B2 B3 P21 P23 P32 P31 P13 P12 P10 P20 P30 C12 C2 C3 B1 B2 B3 V V I V I I V V V C12 C2 C3 V V V,I V X: Local VID X: Relay-VID V I X Y, Y X : relay-VID X to local-VID Y Translation at egress port I V V I I V V I I V SVL C11 I V I V I V I V V V I I P11 V V,I I V P13 P12 P10 P11 E-LAN (1 domain) I I I VLAN has common local VID value I on the inner links B1- B2, B2-B3 and B3-B1 SVL: Shared VLAN Learning VLAN has 2 relay-VID values I and V which operate in SVL mode VID Translation at egress port V V V V

3 Extension of previous example with a 2 nd domain with edge nodes B2-B4-B5 VLAN with two domains interconnected by node B2 Next slide illustrates Need for two inner domain VIDs (Ia, Ib) in this case Relay-VIDs registered at each output port VID translation at egress ports VID values used on the links between the nodes Detailed architecture in node B2 (FID with 3 relay-VIDs, SVL, VID Translation) B1 B2 B3 P21 P23 P32 P31 P13 P12 P10 P20 P30 C12 C2 C3 C52 C51 P11 E-LAN (2 domains) B4B5 P24 P25 P52 P54 P42 P45 P50 P40 C4 P55 VLAN has two domains with a full mesh of links C11

4 B1 B2 B3 C12 C2 C3 C52 C11 C51 E-LAN (2 domains) B4B5 C4 B2 Ia V SVL Ia V Ib V Ia V V Ib P23 P24 P20 P21 V,Ib Ia V V V V V,Ia V,Ia,Ib V,Ia V Ia V V,Ib Ia V Ia Ia V V Ia V Ia,Ib V V,I Ia V V,Ib V V V,Ib Ia Ib V V V V,Ia V V V V V,Ia Ib Ib V,Ia V,Ib V Ib Ib V V,Ib Ib V Ib Ib V V,Ib Ia Ib P25 Ib V Ia V Ib V Ia Ib VLAN has common local VID value Ib on the inner links B2- B4, B4-B5 and B5-B2 VLAN has common local VID value Ia on the inner links B1- B2, B2-B3 and B3-B1 VLAN in Node B2 has 3 relay- VID values Ia, Ib and V which operate in SVL mode VID Translation at egress port X: Local VID X: Relay-VID X Y, Y X : relay-VID X to local-VID Y Translation at egress port SVL: Shared VLAN Learning

5 B1 B2 B3 P21 P23 P32 P31 P13 P12 P10 P20 P30 C12 C2 C3 B1 B2 B3 V V R V Q P V V V C12 C2 C3 V V V,I V I R V R X Y, Y X : relay-VID X to local-VID Y Translation at egress port I V I P V P I Q V Q P I P V Q I Q V R I R V V I I V SVL C11 I V I V R V Q V V V Q P P11 V V,I I V P13 P12 P10 P11 E-LAN (1 domain) X Y, Y X : local-VID Y to relay-VID X Translation at ingress port R I Q I R Q P VID Translation at ingress port VLAN has different local VID values P, Q and R on the inner links B1- B2, B2-B3 and B3-B1 X: local VID X: Relay-VID SVL: Shared VLAN Learning VID translation at the ingress ports in the domain enables the usage of different local VID values on each of the inner domain links. A requirement in transport networks.

6 B1 B2 B3 C12 C2 C3 C52 C11 C51 E-LAN (2 domains) B4B5 C4 B2 Ia V SVL Ia V L V R V V P R L P23 P24 P20 P21 V,Ib R Q P V V V V V,I V,Ia,Ib V,I V I V V I V Ia,Ib V V,I I V V,Ib V V M L K V V V V,Ia V V V V Ib L V,Ia L K Ib K V,Ia V,I V I V K I K V M I M M V M I L I L V V,I I V Ib I V V,I R Ib P25 Ib V L Ia P V P Ib K V K Ia K VLAN has different local VID values P, Q and R on the inner links B1- B2, B1-B3 and B3-B2 VLAN has different local VID values K, L and M on the inner links B2- B4, B2-B5 and B5-B4 Ia R V,Ib R Ia P V,Ib P I Q V Q P I P V Q I Q V R I R V P Ia R L Ib K VID Translation at ingress port X: Local VID X: Relay-VID X Y, Y X : relay-VID X to local-VID Y Translation at egress port SVL: Shared VLAN Learning X Y, Y X : local-VID Y to relay-VID X Translation at ingress port VID translation at the ingress ports in the domain enables the usage of different local VID values on each of the inner domain links in both domains. A requirement in transport networks.

7 Security in transport networks In the previous E-LAN examples ingress VID Translation is not deployed at all input ports (e.g. not on P20 in slide 6, not on P20, P21, P23, P24, P25 on slide 4) With the Ingress Filtering parameter for the ports set to disabled those VLAN connections are not secured; frames arriving on other input ports of e.g. node B2 with a local VID value V, Ia or Ib can enter the E-LAN VLAN (see Red dashed lines) This security issue is resolved when ingress VID translation is deployed at every input port This prevents that frames with unexpected local VID values can access the port and intrude the VLANs B2 Ia V SVL Ia V Ib V Ia V V Ib P24; Ingress Filtering = Disabled P20; Ingress Filtering = Disabled P21; Ingress Filtering = Disabled Ib Ia Ib P25; Ingress Filtering = Disabled Ib V Ia V Ib V Ia Ib Ia Ib V V V Ia V P23; Ingress Filtering = Disabled

8 VID Translation for E-LAN (2 domains) example When using different VID values on the links between nodes it is required to identify the ports which form a group and ports which are individual All individual ports must be associated with a relay VID (R-VID) value identifying Individual ports Ports which form a group must be associated with a R-VID value identifying that group Administration of individual ports and grouped ports is done via the Ingress VID Translation tables in each port (see next slide for example) For node B2 the following applies: Group 1: (P21,P23): R-VID: Ia Group 2: (P24,P25): R-VID: Ib Individual: P20: R-VID: V For node B5: Group 1: (P52,P54): R-VID: I Individual: P50,P55: R-VID: V B1 B2 B3 P21 P23 P32 P31 P13 P12 P10 P20 P30 C12 C2 C3 C52 C11 C51 P11 B4B5 P24 P25 P52 P54 P42 P45 P50 P40 C4 P55 VID: R VID: Q VID: P VID: M VID: L VID: K VID: A VID: B VID: C VID: D VID: E VID: F VID: G

9 Using VIDs for manually configured optimum data distribution for E-LAN (2 domains) example using ingress VID translation on all ports BridgePortCan transmit (before xlate) (Ingress) VID Translation Egress VID Translation B2P20V, Ia, Ib B VIa B, Ib B, V B P21V, Ib P Ia (Group 1) Ib P, V P P23V, Ib R Ia (Group 1) Ib R, V R P24V, Ia K Ib (Group 2) Ia K, V K P25V, Ia L Ib (Group 2) Ia L, V L B5P50V, I D VI D, V D P52V L I (Group 1) V L P54V M I (Group 1) V M P55V, I E VI E, V E B1………… B3………… B4…………

10 Port Group concept in transport networks The logical concept of a Port Group could be maintained in a transport network as a configuration element in the manually configured optimum data distribution for E-LAN connection management Each port in a node in such E-LAN is marked as either an Individual Port or as a port in a Port Group #i (i1) The ports in a Port Group will see their local VID values translated into a common relay VID value in the ingress VID translation process Relay VID values for the individual and the port group ports have a node local scope; each node can select those values independent of other nodes

11 E-Tree

12 E-Tree types There are four types of E-Tree Unidirectional P2MP E-Tree (outside scope of this document) Bidirectional RMP E-Tree with single root and individual leaves Bidirectional RMP E-Tree with multiple roots and individual leaves Bidirectional RMP E-Tree with multiple roots, individual leaves and one or more leaf groups The 4 th type requires the use of the largest set of relay VID values and local VID values Relay VIDs identify the frames source and potential set of destination ports: R, I, V G1 to V GN Local VIDs identify the frames source port: root, individual leaf, leaf group #i The 2 nd type requires the use of two relay VID values (R, I) and one local VID value per link Local VID identifies in the frames source port: root, individual leaf Ingress VID translation converts local VID value to appropriate relay VID value Egress VID translation converts both relay VID values to same local VID value The 3 rd type requires the use of two relay VID values (R, I) and one or two local VID values per link Local VID values can not be pruned to single value on the links between the root ports Next slides illustrate the 2 nd, 3 rd and 4 th E-Tree types and their configuration details from the viewpoint of a transport network

13 E-Tree (1 root, no leaf groups) Ports Root: R1 Leaf: L1,L2,L3,L4,L51,L52 Local VID values A to G, K, L, P, Q Relay VID values I, R Single local VID value for both directions of transport per link, e.g. B2-B4 link: K Possible due to usage of ingress and egress VID translation single root B1 B2 B3 P21 P31 P13 P12 P10 P20 P30 L1 L2 L3 L52 R1 L51 P11 B4B5 P24 P25 P52P42 P50 P40 L4 P55 Q P L K A B C D E F G

14 B1 B2 B3 E-Tree (1 root, no leaf groups) B4B5 Q P R R R I F R F A I A R B I B R I R G I G I L K RR II I L R L K I K R R C I C R R K I K L R L I R I E R E I D R D R R P I P I Q R Q P I P R Q R Q I X: Local VID X: Relay-VID X Y, Y X : relay-VID X to local-VID Y Translation at egress port SVL: Shared VLAN Learning X Y, Y X : local-VID Y to relay-VID X Translation at ingress port L1 L2 L3 L52 R1 L51 L4 A B C E F G D B2 I R SVL L R P L P24 P20 P21 P25 P R K R K P I L I R B I B B K I R R Graphical representation of configuration details… I

15 Using VIDs for manually configured optimum data distribution for E-Tree (1 root, no leaf groups) example BridgePortCan transmit (before xlate) (Ingress) VID Translation Egress VID Translation B1P10R A IR A P11I G RI G P12R P IR P P13R Q IR Q B2P20R B IR B P21I P RI P P24R K IR K P25R L IR L B3P30R F IR F P31I Q RI Q B4P40R C IR C P42I K RI K B5P50R D IR D P52I L RI L P55R E IR E

16 E-Tree (2 roots, no leaf groups) B1 B3 P21 P31 P13 P12 P10 P20 P30 L1 L2 L3 R5 R1 L5 P11 B4 P24 P25 P52P42 P50 P40 L4 P55 Q P L K A B C D E F G M R B2 B5 Ports Root: R1, R5 Leaf: L1,L2,L3,L4,L5 Local VID values A to G, K, L, M, P, Q, R Relay VID values I, R Single local VID value for both directions of transport for subset of links with only individual leaves behind it B2-B4 link: K Two local VID values for other subset of links with roots plus individual leaves behind it; i.e. B1-B2 link: P, R B2-B5 link: L, M Possible due to usage of ingress and egress VID translation 1 local VID value 2 local VID values

17 B1 B3 E-Tree (2 roots, no leaf groups) B4 Q R R R R I F R F A I A R B I B R R,I R G R,I G R,I L K R I I L R M K I K R R C I C R R K I K L I M R R,I R E R,I E I D R D R R I P I Q R Q P I R Q R Q I X: Local VID X: Relay-VID X Y, Y X : relay-VID X to local-VID Y Translation at egress port SVL: Shared VLAN Learning X Y, Y X : local-VID Y to relay-VID X Translation at ingress port L1 L2 L3 R5 R1 L5 L4 A B C E F G D B2 I R SVL M R P M P24 P20 P21 P25 P I R R K R K P I L I R B I B B K I R,I R R R L I M R R L M B5 B2 P Graphical representation of configuration details… I

18 Using VIDs for manually configured optimum data distribution for E-Tree (2 roots, no leaf groups) example BridgePortCan transmit (before xlate) (Ingress) VID Translation Egress VID Translation B1P10R A IR A P11R,I G RI G, R G P12R,I P I, R RI P, R R P13R Q IR Q B2P20R B IR B P21R,I P I, R RI P, R R P24R K IR K P25R,I L I, M RI L, R M B3P30R F IR F P31I Q RI Q B4P40R C IR C P42I K RI K B5P50R D IR D P52R,I L I, M RI L, R M P55R,I E II E, R E

19 E-Tree (2 roots, 1 leaf group) B1 B3 P21 P31 P13 P12 P10 P20 P30 L1 L2 L3 R5 R1 L5 P11 P24 P25 P52P42 P50 P40 L4 P55 Q P L K A B C D E F G M R B5 Ports Root: R1, R5 Leaf: L1,L2,L3,L4,L5 Leaf group 1: LG14,LG13 Local VID values A to H,J, K, L, M, N,O,P,Q, R,S,T Relay VID values I, R, V G1 2 local VID values 3 local VID values P41 LG14 H B4 N O S T P33 LG13 J B2

20 B1 B3 E-Tree (2 roots, 1 leaf group) B4 Q R R R R I F R F A I A R B I B R R,I,V G1 R G R,I,V G1 G R,I,V G1 L K R,V G1 I,V G1 R,I,V G1 V G1 O I L R M K I K R N V G1 R C I C R R K I K V G1 N O V G1 L I M R R,I,V G1 R E R,I,V G1 E I D R D R I Q R Q V G1 T Q R Q I T V G1 X: Local VID X: Relay-VID X Y, Y X : relay-VID X to local-VID Y Translation at egress port SVL: Shared VLAN Learning X Y, Y X : local-VID Y to relay-VID X Translation at ingress port L1 L2 L3 R5 R1 L5 L4 A B C E F G D B2 I R SVL M R P M P24 P20 P21 P25 P I R R K R K P I L I R B I B B K I R,I,V G1 R, V G1 R R L I M R R L M B5 B2 P Graphical representation of configuration details… N S T LG14 H LG13 J R,V G1 O V G1 J R J V G1 N VG1VG1 N N S S S O VG1VG1 O O S V G1 P I R V G1 S I P R R,V G1 H R H V G1 I,V G1

21 Using VIDs for manually configured optimum data distribution for E-Tree (2 roots, 1 leaf group) example BridgePortCan transmit (before xlate) (Ingress) VID Translation Egress VID Translation B1P10R A IR A P11R,I,V G1 G RI G, R G, V G1 G P12R,I,V G1 P I, R R, S V G1 I P, R R, V G1 S P13R,V G1 Q I, T V G1 R Q, V G1 T B2P20R B IR B P21R,I,V G1 P I, R R, S V G1 I P, R R, V G1 S P24R,V G1 K I, N V G1 R K, V G1 N P25R,I,V G1 L I, M R, O V G1 I L, R M, V G1 O B3P30R F IR F P31I,V G1 Q R, T V G1 I Q, V G1 T P33R,V G1 J V G1 R J, V G1 J B4P40R C IR C P41R,V G1 H V G1 R H, V G1 H P42I,V G1 K R, N V G1 I K, V G1 N B5P50R D IR D P52R,I,V G1 L I, M R, O V G1 I L, R M, V G1 O P55R,I,V G1 E RI E, R E, V G1 E

22 E-LAN/E-Tree in ITU-T models

23 G.8021 E-LAN/E-Tree modelling 802.1Q multi-VID E-LAN/E-Tree models can be 1-to-1 translated into G.8021 ETH layer model Each relay VID reference point is represented by an ETH_FP (Flow Point) reference point The multi relay-VID FID is represented by an ETH Flow Forwarding (FF) process in SVL mode within an ETH Connection function (see clause 9.1.1/G.8021) I R VID Translation relates local VID with one or more ETH_FPs Relay-VID reference point Set of ETH_FPs represents EISS ETH_AP represents ISS reference point G.8021 ETH Flow Forwarding (FF) process in SVL mode Relay-VID I learning and forwarding process Relay-VID R learning and forwarding process G.8021 ETH to ETH multiplexing adaptation function

24 MEP and MIP functions in E-LAN/E-Tree

25 Looking at the model of E-LAN Node B2 I am wondering where the MEP and MIP functions should be located Two locations are considered Red Green Red locations imply that the VID Translation is located between the UP MEPs and the MAC Relay, which is not consistent with its current location in the clause 6.9 Support of the EISS function Green locations are consistent with 802.1Q functionality order, but require extensions to the G.8021 MEP Sink and MIP Sink functions, which currently do not support to read OAM from multiple VIDs MEPs and MIPs in these E-LAN cases B2 Ia V SVL Ia B L V R V P R L P23 P24 P20 P21 Ib R P25 Ib B L Ia P V P Ib K V K Ia K P R L Ib K V B V B

26 MEPs and MIPs in these E-Tree cases Looking at the model of E-Tree Node B2 I am wondering where the MEP and MIP functions should be located Two locations are considered Red Green Red locations imply that the VID Translation is located between the UP MEPs and the MAC Relay, which is not consistent with its current location in the clause 6.9 Support of the EISS function Green locations are consistent with 802.1Q functionality order Both Red and Green locations require extensions to the G.8021 MEP Sink and MIP Sink functions to support reading from multiple VIDs B2 I R SVL M R P M P24 P20 P21 P25 P I R R K R K P I L I R B I B B K I R R L I M R R L

27 Ia B MEP and MIP primary VID assignments in E-LAN node B2 Up MEP and Half MIP functions have different primary VID (Ia) than Down MEP/Half MIP (V) Up MEP and Half MIP functions have different primary VID (Ib) than Down MEP/Half MIP (V) MAC Relay Ib IaV LAN Ia.. V Ib.. Primary VID: Ib Primary VID: V P24 and P25 Ia IbV LAN Ib.. V Ia.. Primary VID: Ia Primary VID: V P21 and P23 V IbV LAN Ib B V B V B Primary VID: V P20 Up and Down MEP and Half MIP functions have same primary VID (V) Primary VID values for the Up MEP/HalfMIP functions on the three port sets are different (V, Ia and Ib); configuration should be performed carefully

28 R R.. MEP and MIP primary VID assignments in 3 rd type E-Tree node B2 Up MEP and Half MIP functions have different primary VID (I) than Down MEP/Half MIP (R) MAC Relay I R LAN R.. I Primary VID: I Primary VID: R P20 and P24 I IR LAN I.. R I Primary VID: R P21 and P25 Up and Down MEP and Half MIP functions have same primary VID (R) Primary VID values for the Up MEP/HalfMIP functions on the two port sets are different (R and I); configuration should be performed carefully

29 R R.. MEP and MIP primary VID assignments in 4 th type E-Tree node B2 Up MEP and Half MIP functions have different primary VID (I) than Down MEP/Half MIP (R) MAC Relay I R LAN R B I B Primary VID: I Primary VID: R P20 I IR LAN I.. R I Primary VID: R P21 and P25 Up and Down MEP and Half MIP functions have same primary VID (R) Primary VID values for the Up MEP/HalfMIP functions on the three port sets are different (R and I); configuration should be performed carefully V G1.. V G1.. V G1 N I R LAN V G1 N R K I K Primary VID: I Primary VID: R P24 Up MEP and Half MIP functions have different primary VID (I) than Down MEP/Half MIP (R)

30 G.8021 MEP/MIP functions G.8021 ETH MIP function has single ETH_FP To support the multi-VID E-Tree the G.8021 MIP function should get multiple ETH_FPs OAM XXM frames may ingress on each of those ETH_FPs and the associated XXR frames may egress on the primary_ETH_FP G.8021 specifies ETH MEP and ETHG MEP functions ETH MEP function contains a single ETH_FP ETHG MEP function contains multiple ETH_FPs OAM frames can be read/extracted from one ETH_FP only OAM frames can be generated/inserted into one ETH_FP only The multi-VID E-LAN/E-Tree models require and ETH MEP function with multiple ETH_FPs, with reading/extracting capabilities of OAM frames on every ETH_FP and generating/inserting capabilities of OAM frames on the primary_ETH_FP only ETH and ETHG MEP functions could be merged into one ETH MEP function, or alternatively the ETH MEP function can be left unchanged and the ETHG MEP function can be extended to read/extract OAM from every ETH_FP

31 G.8021 nodal functional models for E-LAN and E-Tree cases Slides 32-34: E-LAN Slides 35-37: E-Tree, 2 nd type Slides 38-40: E-Tree, 3 rd type Slides 41-43: E-Tree, 4 th type

32 B1 G.8021 nodal functional models for E-LAN (2 domains) example FF(I) FF(V) P13P10P11 GGGAAPP P12 QQA P23P24P25 B2 FF(Ib) P20P21 PPPBBRRKK FF(Ia) FF(V) LLBRLKB Local VID ETH_FP mapping represents Ingress VID Translation and provides security Local VID value ETH_FP(V) is optional in this case; could be deleted ETH_FP Local VID mapping represents Egress VID Translation Connecting ETH_FF(x) with ETH_FP represents Egress Filtering

33 P30P31 B3 QQFF FF(I) RR P32 FF(V) F P45P40P42 B4 KCC FF(I) M FF(V) KCM G.8021 nodal functional models for E-LAN (2 domains) example

34 P50P52 B5 LLDD FF(I) MM P54 EE P55 FF(V) ED G.8021 nodal functional models for E-LAN (2 domains) example B1 B2 B3 P21 P23 P32 P31 P13 P12 P10 P20 P30 C12 C2 C3 C52 C11 C51 P11 B4B5 P24 P25 P52 P54 P42 P45 P50 P40 C4 P55 VID: R VID: Q VID: P VID: M VID: L VID: K VID: A VID: B VID: C VID: D VID: E VID: F VID: G

35 B1 G.8021 nodal functional models for 2 nd type E-Tree (2 domains) example FF(I) FF(R) P13P10P11 GGAPP P12 QQA P24P25 B2 P20P21 BKK FF(I) FF(R) LLB PP

36 P30P31 B3 QQF FF(I) FF(R) F P40P42 B4 KC FF(I) FF(R) KC G.8021 nodal functional models for 2 nd type E-Tree (2 domains) example

37 P50P52 B5 D FF(I) EE P55 FF(R) D G.8021 nodal functional models for 2 nd type E-Tree (2 domains) example LL B1 B2 B3 P21 P31 P13 P12 P10 P20 P30 L1 L2 L3 L52 R1 L51 P11 B4B5 P24 P25 P52P42 P50 P40 L4 P55 Q P L K A B C D E F G

38 B1 G.8021 nodal functional models for 3 rd type E-Tree (2 domains) example FF(I) FF(R) P13P10P11 GGGAPP P12 QQA P24P25 B2 P20P21 BKK FF(I) FF(R) LLMB RR PPRR M

39 P30P31 B3 QF FF(I) FF(R) F P40P42 B4 KC FF(I) FF(R) KC G.8021 nodal functional models for 3 rd type E-Tree (2 domains) example Q

40 P50P52 B5 D FF(I) EE P55 FF(R) ED G.8021 nodal functional models for 3 rd type E-Tree (2 domains) example B1 B3 P21 P31 P13 P12 P10 P20 P30 L1 L2 L3 R5 R1 L5 P11 B4 P24 P25 P52P42 P50 P40 L4 P55 Q P L K A B C D E F G M R B2 B5 LLMM

41 B2 FF(V G1 ) B1 FF(V G1 ) G.8021 nodal functional models for 4 th type E-Tree (2 domains) example FF(I) FF(R) P13P10P11 GGGAPP P12 QQA P24P25P20P21 BKK FF(I) FF(R) LLMB RR PPRR M GTT SS SSNNOO

42 B4 FF(V G1 ) B3 FF(V G1 ) P30P31 QF FF(I) FF(R) F P40P42 CK FF(I) FF(R) KC G.8021 nodal functional models for 4 th type E-Tree (2 domains) example Q TT P33 JJJ P41 HHH NN

43 B5 FF(V G1 ) P50P52 D FF(I) EE P55 FF(R) ED G.8021 nodal functional models for 4 th type E-Tree (2 domains) example B1 B3 P21 P31 P13 P12 P10 P20 P30 L1 L2 L3 R5 R1 L5 P11 P24 P25 P52P42 P50 P40 L4 P55 Q P L K A B C D E F G M R B5 P41 LG14 H B4 N O S T P33 LG13 J B2 LLMM OOEE

44 Interworking split-horizon port group model with multi-vid model

45 E-LAN interworking example Nodes designed according to the split-horizon port group model are able to interwork with nodes designed according to the multi-vid model Nodes B1, B2, B4 could be using split-horizon port groups (SH) Nodes B3, B5 could be using multi-vid model (MV) Both node types deploy a common Local VID approach, which guarantees interworking between these two node types Note – Any other combination of SH and MV node types also interworks B1 SH B2 SH B3 MV P21 P23 P32 P31 P13 P12 P10 P20 P30 C12 C2 C3 C52 C11 C51 P11 B4 SH B5 MV P24 P25 P52 P54 P42 P45 P50 P40 C4 P55 VID: R VID: Q VID: P VID: M VID: L VID: K VID: A VID: B VID: C VID: D VID: E VID: F VID: G

46 E-Tree, 2 nd type interworking example Nodes designed according to the split-horizon port group model are able to interwork with nodes designed according to the multi-vid model Nodes B1, B4 could be using split-horizon port groups (SH) Nodes B2, B3, B5 could be using multi-vid model (MV) Both node types deploy a common Local VID approach, which guarantees interworking between these two node types Note – Any other combination of SH and MV node types also interworks P21 P31 P13 P12 P10 P20 P30 L1 L2 L3 L52 R1 L51 P11 P24 P25 P52P42 P50 P40 L4 P55 Q P L K A B C D E F G B1 SH B2 MV B3 MV B4 SH B5 MV

47 E-Tree, 3 rd and 4 th types interworking The 3 rd and 4 th type E-Tree cases can not be supported by means of split-horizon port groups. As such, there is no interworking requirement for multi-vid designs of those two E- Tree cases.