Summary of Boundary Layer, Microphysics and Cumulus Options Jimy Dudhia NCAR/MMM.

Slides:



Advertisements
Similar presentations
© Crown copyright Met Office Cloudier Evaluating a new GCM prognostic cloud scheme using CRM data Cyril Morcrette, Reading University, 19 February 2008.
Advertisements

Weather Research & Forecasting: A General Overview
Add a Physics Scheme into WRF Model
Impact of entrainmnet and mixing on optical properties of boundary layer clouds Wojciech W. Grabowski, Hugh Morrison, NCAR, Boulder, Colorado, USA Joanna.
Meteorologisches Institut der Universität München
1D Dice Experiment at Meteo-France and LES preliminary result E. Bazile, I. Beau, F. Couvreux and P. Le Moigne (CNRM/GAME) DICE Workshop Exeter October.
A NUMERICAL PREDICTION OF LOCAL ATMOSPHERIC PROCESSES A.V.Starchenko Tomsk State University.
The WRF Model: 2012 Annual Update
The Problem of Parameterization in Numerical Models METEO 6030 Xuanli Li University of Utah Department of Meteorology Spring 2005.
WRF Physics Options Jimy Dudhia. diff_opt=1 2 nd order diffusion on model levels Constant coefficients (khdif and kvdif) km_opt ignored.
GFDL Geophysical Fluid Dynamics GFDL Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey AM2 cloud sensitivity to details of convection and cloud.
© Crown copyright Met Office Radiation developments Latest work on the radiation code in the Unified Model James Manners, Reading collaboration meeting.
The Centre for Australian Weather and Climate Research A partnership between CSIRO and the Bureau of Meteorology The Effect of Turbulence on Cloud Microstructure,
John J. Cassano - University of Colorado Wieslaw Maslowski -Naval Postgraduate School William Gutowski - Iowa State University Dennis Lettenmaier – University.
Geophysical Modelling: Climate Modelling How advection, diffusion, choice of grids, timesteps etc are defined in state of the art models.
Overview of WRF ARW Thermodynamic Equation
Multiscale Kain-Fritsch Scheme: Formulations and Tests
GFS Deep and Shallow Cumulus Convection Schemes
Length Scale analysis of the transition from shallow to deep convection João Paulo A. Martins (1) Pedro M. A. Miranda (1) Pedro M. M. Soares (1) João Teixeira.
Applied NWP We’re going to tear apart the computer weather forecast model, “THE BLACK BOX”, and look at its guts…(B&VK Chapter 10, Kalnay Chapter 4, Krish.
WRF Physics Options Acknowledgements: Slides by Jimy Dudhia (NCAR) Dr Meral Demirtaş Turkish State Meteorological Service Weather Forecasting Department.
GardeGarde Designing unified convection parameterizations: two proposals related to equation sets and entrainment. Jean-Marcel Piriou, Météo-France. GCSS.
Implementation of IPHOC in VVCM: Tests of GCSS Cases Anning Cheng 1,2 and Kuan-Man Xu 2 1.AS&M, Inc. 2.Science Directorate, NASA Langley Research Center.
Sensitivity of High-resolution Tropical Cyclone Intensity Forecast to Surface Flux Parameterization Chi-Sann Liou, NRL Monterey, CA.
Mesoscale Modeling Review the tutorial at: –In class.
– Equations / variables – Vertical coordinate – Terrain representation – Grid staggering – Time integration scheme – Advection scheme – Boundary conditions.
WRF Physics Options Part 2
A new physics package for the next version of MIROC Masahiro Watanabe CCSR, University of Tokyo May 27, 2008 Team “MIROC-physics”
Atmospheric Modeling in an Arctic System Model John J. Cassano Cooperative Institute for Research in Environmental Sciences and Department of Atmospheric.
– Equations / variables – Vertical coordinate – Terrain representation – Grid staggering – Time integration scheme – Advection scheme – Boundary conditions.
Changing G-RSM options. Files in def/model_config debug.h: extra message dumping mainly for debugging depend.h: option dependency / consistency setting.
Convective Parameterization Options
Physics Implementation Three_level Structure What you might need to do
14 th Annual WRF Users’ Workshop. June 24-28, 2013 Improved Initialization and Prediction of Clouds with Satellite Observations Tom Auligné Gael Descombes,
Large Eddy Simulation of PBL turbulence and clouds Chin-Hoh Moeng National Center for Atmospheric Research.
Forecast simulations of Southeast Pacific Stratocumulus with CAM3 and CAM3-UW. Cécile Hannay (1), Jeffrey Kiehl (1), Dave Williamson (1), Jerry Olson (1),
The EnKF Analyses and Forecasts of the 8 May 2003 Oklahoma City Tornadic Supercell Storm By Nusrat Yussouf 1,2 Edward Mansell 2, Louis Wicker 2, Dustan.
Parameterization of the effects of Moist Convection in GCMs Mass flux schemes –Basic concepts and quantities –Quasi-steady Entraining/detraining plumes.
WRF Version 2: Physics Update Jimy Dudhia NCAR/MMM.
Yuqing Wang and Chunxi Zhang International Pacific Research Center University of Hawaii at Manoa, Honolulu, Hawaii.
Simulation of boundary layer clouds with double-moment microphysics and microphysics-oriented subgrid-scale modeling Dorota Jarecka 1, W. W. Grabowski.
CHANGSHENG CHEN, HEDONG LIU, And ROBERT C. BEARDSLEY
UTCS PP Status Report Dmitrii Mironov German Weather Service, Offenbach am Main, Germany COSMO General Meeting, Krakow, Poland
A Thermal Plume Model for the Boundary Layer Convection: Representation of Cumulus Clouds C. RIO, F. HOURDIN Laboratoire de Météorologie Dynamique, CNRS,
Initial Results from the Diurnal Land/Atmosphere Coupling Experiment (DICE) Weizhong Zheng, Michael Ek, Ruiyu Sun, Jongil Han, Jiarui Dong and Helin Wei.
Overview of Microphysics in NCEP Models Brad Ferrier 1,2 (Thanks to Eric Aligo 1,2 ) 1 NOAA/NWS/NCEP/EMC 2 I.M. Systems Group, Inc (IMSG) “Quick Hits”
Module 6 MM5: Overview William J. Gutowski, Jr. Iowa State University.
Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss Component testing of the COSMO model’s turbulent diffusion.
11 Implementing a New Shallow Convection Scheme into WRF Aijun Deng and Brian Gaudet Penn State University Jimy Dudhia National Center for Atmospheric.
Mesoscale Modeling with a 3D Turbulence Scheme Jocelyn Mailhot and Yufei Zhu (Claude Pelletier) Environment Canada MSC / MRB 3 rd Annual Meeting on CRTI.
Update on the 2-moment stratiform cloud microphysics scheme in CAM Hugh Morrison and Andrew Gettelman National Center for Atmospheric Research CCSM Atmospheric.
MODELING OF SUBGRID-SCALE MIXING IN LARGE-EDDY SIMULATION OF SHALLOW CONVECTION Dorota Jarecka 1 Wojciech W. Grabowski 2 Hanna Pawlowska 1 Sylwester Arabas.
Update on progress with the implementation of a new two-moment microphysics scheme: Model description and single-column tests Hugh Morrison, Andrew Gettelman,
Franklin, C. N., G. J. Holland, and P. T. May, 2005: Sensitivity of tropical cyclone rainbands to ice-phase microphysics. Mon. Wea. Rev., 133,
Numerical Modeling Laboratory Yonsei University A new ice microphysical processes for a commonly used bulk parameterization of cloud and precipitation.
Northwest Modeling Consortium
Using microphysical observations during
Operational COSMO of MeteoSwiss
Japan Meteorological Agency / Meteorological Research Institute
Parameterization of Cloud Microphysics Based on the Prediction of Bulk Ice Particle Properties. Part II: Case Study Comparisons with Observations and Other.
Advisors: Fuqing Zhang and Eugene Clothiaux
A new approach to parameterize ice-phase microphysics
Dan Harnos, Jessica Colberg, Joseph Ching, Michelle Pitcel
Vertical resolution of numerical models
Bill Scheftic Atmo 558 May 6th 2008
Implementation of a general tracer treatment
Han, J. , W. Wang, Y. C. Kwon, S. -Y. Hong, V. Tallapragada, and F
Sensitivity of WRF microphysics to aerosol concentration
COSMO-GM Rome, WG-2 Meeting, Sept. 5, 2011
The Weather Research and Forecast – Advanced Weather Research (WRF-ARW) Model Dr Jonathan Fairman 26 April 2016.
Presentation transcript:

Summary of Boundary Layer, Microphysics and Cumulus Options Jimy Dudhia NCAR/MMM

PBL schemes in V3.3 bl_pbl_ physics SchemeReferenceAdded 1YSUHong, Noh and Dudhia (2006, MWR)2004 2MYJJanjic (1994, MWR)2000 3GFSHong and Pan (1996, MWR)2005 4QNSESukoriansky, Galperin and Perov (2005, BLM)2009 5MYNN2Nakanishi and Niino (2006, BLM)2009 6MYNN3Nakanishi and Niino (2006, BLM)2009 7ACM2Pleim (2007, JAMC)2008 8BouLacBougeault and Lacarrere (1989, MWR)2009 9UWBretherton and Park (2009, JC) TEMFAngevine, Jiang and Mauritsen (2010, MWR) MRFHong and Pan (1996, MWR)2000

PBL schemes in V3.3 bl_pbl_ physics SchemeCoressf_sfclay_ physics Prognostic variables Diagnostic variables Cloud mixing 1YSUARW NMM1exch_hQC,QI 2MYJARW NMM2TKE_PBLEL_PBL, exch_hQC,QI 3GFS(hwrf) NMM3QC,QI 4QNSEARW NMM4TKE_PBLEL_PBL, exch_h, exch_m QC,QI 5MYNN2ARW1,2,5QKETsq, Qsq, Cov, exch_h, exch_m QC 6MYNN3ARW1,2,5QKE, Tsq, Qsq, Cov exch_h, exch_mQC 7ACM2ARW1,7QC,QI 8BouLacARW1,2TKE_PBLEL_PBL, exch_h, exch_m QC 9UWARW2TKE_PBLexch_h, exch_mQC 10TEMFARW10TE_TEMF*_temfQC, QI 99MRFARW NMM1QC,QI 3.3 changes

LES schemes bl_pbl_p hysics diff_optkm_optSchemeCoressf_sfclay _physics isfflxPrognostic variables 022tkeARW0,1,2 tke 0233d SmagorinskyARW0,1,2 Unified horizontal and vertical mixing (for dx~dz). Typically needed for dx<~200 m. Also use mix_isotropic=1. isfflxsf_sfclay_physicsHeat fluxDragReal/Ideal 00From namelist tke_heat_flux From namelist tke_drag_coefficient Ideal 11,2From LSM/sfclay physics (HFX, QFX) From sfclay physics (UST) Real 21,2From namelist tke_heat_flux From sfclay physics (UST) Ideal Namelist isfflx controls surface flux methods

Microphysics schemes in V3.3 mp_physicsSchemeReferenceAdded 1KesslerKessler (1969)2000 2Lin (Purdue)Lin, Farley and Orville (1983, JCAM)2000 3WSM3Hong, Dudhia and Chen (2004, MWR)2004 4WSM5Hong, Dudhia and Chen (2004, MWR)2004 5Eta (Ferrier)Rogers, Black, Ferrier et al. (2001)2000 6WSM6Hong and Lim (2006, JKMS)2004 7GoddardTao, Simpson and McCumber (1989,MWR)2008 8Thompson (+old)Thompson et al. (2008, MWR)2009 9Milbrandt 2-momMilbrandt and Yau (2005, JAS) Morrison 2-momHong and Pan (1996, MWR) SBU-YlinLin and Colle (2011, MWR) WDM5Lim and Hong (2010,...) WDM6Lim and Hong (2010,…)2009

Microphysics schemes in V3.3 mp_physicsSchemeCoresMass VariablesNumber Variables 1KesslerARWQc Qr 2Lin (Purdue)ARW (Chem)Qc Qr Qi Qs Qg 3WSM3ARWQc Qr 4WSM5ARW NMMQc Qr Qi Qs 5Eta (Ferrier)ARW NMMQc Qr Qs (Qt*) 6WSM6ARW NMMQc Qr Qi Qs Qg 7GoddardARWQc Qr Qi Qs Qg 8ThompsonARW NMMQc Qr Qi Qs QgNi Nr 9Milbrandt 2-momARWQc Qr Qi Qs Qg QhNc Nr Ni Ns Ng Nh 10Morrison 2-momARW (Chem)Qc Qr Qi Qs QgNr Ni Ns Ng 13SBU-YLinARWQc Qr Qi Qs 14WDM5ARWQc Qr Qi QsNn** Nc Nr 16WDM6ARWQc Qr Qi Qs QgNn** Nc Nr * Advects only total condensate ** Nn= CCN number

Cumulus schemes in V3.3 cu_physicsSchemeCoresMoisture Tendencies Momentum Tendencies Shallow Convection 1Kain-Fritsch EtaARW NMMQc Qr Qi Qsnoyes 2Betts-Miller-JanjicARW NMM-noyes 3Grell-DevenyiARWQc Qino 4Simplified Arakawa- Schubert ARW NMMQc Qiyes (NMM)yes (ARW) 5Grell-3ARWQc Qinoyes 6TiedtkeARWQc Qiyes 7Zhang-McFarlaneARWQc Qiyesno 14New SASARWQc Qiyes 99Old Kain-FritschARWQc Qr Qi Qsno

Solver Sequence  wuv  q Water ice Scalar Chem Soil T Soil Q Rad Sfc PBL Cnv Adv Diff Dyn Adv Diff Mic tendency update adjust Time-step

Time-step schematic Physics Tendencies First-guess Advection 1/3 step Intermediate Advection 1/2 step Final Advection Full step Microphysics 1st RK step 2nd RK step 3rd RK step Small steps