Numerical activities in COSMO; Physics interface; LM-z Zurich 2006 J. Steppeler (DWD)

Slides:



Advertisements
Similar presentations
A High-Order Finite-Volume Scheme for the Dynamical Core of Weather and Climate Models Christiane Jablonowski and Paul A. Ullrich, University of Michigan,
Advertisements

V. Shashkin et al. Mass-conservative SL, WWOSC-2104, P&P August 21, 2014 Inherently mass-conservative semi-Lagrangian transport scheme and global hydrostatic.
(c) MSc Module MTMW14 : Numerical modelling of atmospheres and oceans Staggered schemes 3.1 Staggered time schemes.
Günther Zängl, DWD1 Improvements for idealized simulations with the COSMO model Günther Zängl Deutscher Wetterdienst, Offenbach, Germany.
ICONAM ICOsahedral Non-hydrostatic Atmospheric Model -
Lucio Torrisi WG2-COSMO GM, Bucharest 2006 Recents Improvements in LMZ Code Lucio TORRISI CNMCA – Pratica di Mare (Rome)
For the Lesson: Eta Characteristics, Biases, and Usage December 1998 ETA-32 MODEL CHARACTERISTICS.
1 Internal Seminar, November 14 th Effects of non conformal mesh on LES S. Rolfo The University of Manchester, M60 1QD, UK School of Mechanical,
Accurate Numerical Treatment of the Source Terms in the Non-linear Shallow Water Equations J.G. Zhou, C.G. Mingham, D.M. Causon and D.M. Ingram Centre.
Generalized vertical Coordinate Ocean Model for Multi-Scale, Non-Boussinesq or Boussinesq Applications Y. Tony Song Jet Propulsion Laboratory, California.
Shallow water equations in 1D: Method of characteristics
A TWO-FLUID NUMERICAL MODEL OF THE LIMPET OWC CG Mingham, L Qian, DM Causon and DM Ingram Centre for Mathematical Modelling and Flow Analysis Manchester.
Deutscher Wetterdienst 1 Status report of WG2 - Numerics and Dynamics COSMO General Meeting , Offenbach Michael Baldauf Deutscher Wetterdienst,
SELFE: Semi-implicit Eularian- Lagrangian finite element model for cross scale ocean circulation Paper by Yinglong Zhang and Antonio Baptista Presentation.
M. Baldauf, DWD Numerical contributions to the Priority Project ‘Runge-Kutta’ COSMO General Meeting, Working Group 2 (Numerics) Bukarest,
A Look at High-Order Finite- Volume Schemes for Simulating Atmospheric Flows Paul Ullrich University of Michigan.
C M C C Centro Euro-Mediterraneo per i Cambiamenti Climatici COSMO General Meeting - September 8th, 2009 COSMO WG 2 - CDC 1 An implicit solver based on.
Global models with 1 km resolution possible in near future Followed in Projects outside COSMO: ICON; NCAR- NOAA-Fort Collins; Earth simulator quasi regular.
A cell-integrated semi-Lagrangian dynamical scheme based on a step-function representation Eigil Kaas, Bennert Machenhauer and Peter Hjort Lauritzen Danish.
ICON Bucharest 2006 J.Steppeler, Ripodas, Th. Heinze, D. Majewski (DWD - German Weather Service, Offenbach, Germany) L. Bonaventura (MOX - Politecnico.
Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss Atmosphere at rest experiments with the latest COSMO version.
Chapter 03: Macroscopic interface dynamics Xiangyu Hu Technical University of Munich Part A: physical and mathematical modeling of interface.
Sensitivity experiments with the Runge Kutta time integration scheme Lucio TORRISI CNMCA – Pratica di Mare (Rome)
Conservation of Moisture
24-28 Sept. 2012Baldauf, Reinert, Zängl (DWD)1 Michael Baldauf, Daniel Reinert, Günther Zängl (DWD, Germany) PDEs on the sphere, Cambridge, Sept.
Numerical simulations of inertia-gravity waves and hydrostatic mountain waves using EULAG model Bogdan Rosa, Marcin Kurowski, Zbigniew Piotrowski and Michał.
Presentation of the paper: An unstructured grid, three- dimensional model based on the shallow water equations Vincenzo Casulli and Roy A. Walters Presentation.
10 th COSMO General Meeting, Krakow, September 2008 Recent work on pressure bias problem Lucio TORRISI Italian Met. Service CNMCA – Pratica di Mare.
Recent Developments in the NRL Spectral Element Atmospheric Model (NSEAM)* Francis X. Giraldo *Funded.
Offenbach Semi-Implicit Time Integration (NH Schemes of the Next Generation) J. Steppeler, DWD.
M. Baldauf, U. Blahak (DWD)1 Status report of WG2 - Numerics and Dynamics COSMO General Meeting Sept. 2013, Sibiu M. Baldauf, U. Blahak (DWD)
10-13 Sept. 2012M. Baldauf (DWD)1 Michael Baldauf Deutscher Wetterdienst, Offenbach, Germany Priority Project "Conservative Dynamical Core" Final report.
COMPUTATIONAL FLUID DYNAMICS (AE 2402) Presented by IRISH ANGELIN S AP/AERO.
FALL 2015 Esra Sorgüven Öner
Discretization Methods Chapter 2. Training Manual May 15, 2001 Inventory # Discretization Methods Topics Equations and The Goal Brief overview.
1 Priority Project CDC Task 2: The compressible approach COSMO-GM, , Moscow Pier Luigi Vitagliano (CIRA), Michael Baldauf (DWD)
Nonhydrostatic Global Circulation Model ICON A joint model development of DWD and MPI-M.
Bogdan Rosa 1, Marcin Kurowski 1 and Michał Ziemiański 1 1. Institute of Meteorology and Water Management (IMGW), Warsaw Podleśna, 61
10 th COSMO General Meeting, Krakow, September 2008 Recent work on pressure bias problem Lucio TORRISI Italian Met. Service CNMCA – Pratica di Mare.
Standardized Test Set for Nonhydrostatic Dynamical Cores of NWP Models
1 Reformulation of the LM fast- waves equation part including a radiative upper boundary condition Almut Gassmann and Hans-Joachim Herzog (Meteorological.
EGU General assembly 2014, AS 1.5 A three-dimensional Conservative Cascade semi-Lagrangian transport Scheme using the Reduced Grid on the sphere (CCS-RG)
Numerical Algorithm Development and Testing in HYCOM.
Development of an Atmospheric Climate Model with Self-Adapting Grid and Physics Joyce E. Penner 1, Michael Herzog 2, Christiane Jablonowski 3, Bram van.
Deutscher Wetterdienst Flux form semi-Lagrangian transport in ICON: construction and results of idealised test cases Daniel Reinert Deutscher Wetterdienst.
Global variable-resolution semi-Lagrangian model SL-AV: current status and further developments Mikhail Tolstykh Institute of Numerical Mathematics, Russian.
Status Report WG2 J. Steppeler, DWD Zurich Z-Coordinate Runge Kutta and Semi-Lagrangian methods Direct implicit solvers Courant number independent.
Deutscher Wetterdienst 1FE 13 – Working group 2: Dynamics and Numerics report ‘Oct – Sept. 2008’ COSMO General Meeting, Krakau
Performance of a Semi-Implicit, Semi-Lagrangian Dynamical Core for High Resolution NWP over Complex Terrain L.Bonaventura D.Cesari.
Implementation of an improved horizontal diffusion scheme into the Méso-NH Günther Zängl Laboratoire d’Aérologie / University of Munich 7 March 2005.
1 On forward in time differencing: an unstructured mesh framework Joanna Szmelter Piotr Smolarkiewicz Loughborough University NCAR UK Colorado USA.
Modelling of Marine Systems. Shallow waters Equations.
L-Galerkin spline methods and cut cells J. Steppeler, CSC, Hamburg Acknowledgement: Andreas Dobler (Univ. Berlin), Sanghun Park (NCAR), Edgar Huckert (SCHlA),
Computer Animation Rick Parent Computer Animation Algorithms and Techniques Computational Fluid Dynamics.
Computational Fluid Dynamics Lecture II Numerical Methods and Criteria for CFD Dr. Ugur GUVEN Professor of Aerospace Engineering.
Operational COSMO of MeteoSwiss
Reporter: Prudence Chien
A TWO-FLUID NUMERICAL MODEL OF THE LIMPET OWC
Status of the COSMO-Software and Documentation
Supervisors : Alan Gadian, Sarah-Jane Lock, Andrew Ross
Tuning the horizontal diffusion in the COSMO model
James Shaw Hilary Weller, John Methven, Terry Davies
Continuity Equation.
Terrain-following coordinates over steep and high orography
Bucharest 2006 J. Steppeler (DWD)
Michael Baldauf Deutscher Wetterdienst, Offenbach, Germany
COSMO implementations at CNMCA: tests with different dinamycal options
Need for Numerical Developments within COSMO J
Bucharest 2006 J. Steppeler (DWD)
Conservative Dynamical Core (CDC)
Presentation transcript:

Numerical activities in COSMO; Physics interface; LM-z Zurich 2006 J. Steppeler (DWD)

Is there a vision towards 2010? Energy and Mass conservation Approximation order 3 avoiding violation of approximation conditions: Rational physics interface Terrain intersecting grid (cut cell method) Serendipidity grids Grids on the sphere

NP=3 NP=4 NP=5 Cube 4-body Isocahedron Rhomboidal divisions of the sphere

Third order convergence of shallow water model at day 3

Numerical activities in COSMO Semi-Implicit method on distributed memory computers using Green functions Two main projects LM_RK: Runge Kutta time integration, Order 3 LM_Z: Cut cell terrain intersecting discretisation

Finite Volumes: 1 Baumgardner Order2: 1 Baumgardner Order3: 1 Great circle grids: RK, SI, SL1 now3 seem possible Tiled grids: 1.5 Serendipidity grids3 Unstructured1/1.3 Conservation 1/2 Saving factors of Discretisations

Idealized 1D advection test analytic sol. implicit 2. order implicit 3. order implicit 4. order C= timesteps C= timesteps Verbesserte Vertikaladvektion für dynamische Var. u, v, w, T, p‘

case study ‚ , 00 UTC‘ total precipitation sum after 18 h with vertical advection 2. order difference total precpitation sum after 18 h ‚vertical advection 3. order – 2. order‘ Improved vertical advektion for dynamic var. u, v, w, T, p‘

starting point after 1 h modified version: pressure gradient on z-levels, if |metric term| > |terrain follow. term| cold pool – problem in narrow valleys is essentially induced by pressure gradient term T (°C) J. Förstner, T. Reinhardt

Coordinates cut into mountains The finite volume cut cell is used for discretisation / unstructured grid Boundary structures are kept over mountains (vertically unstructured The violation of an approximation error is avoided LM_Z

The step-orography i - 1/2 j - 1/2 j + 1/2 j - 1/2 i + 1/2 j + 1/2 i, j Shaved elements The shaved elements are mathematically more correct than step boundaries By shaved elements the z- coordinate is improved such that the criticism of Gallus and Klemp (2000), Mon. Wea. Rev. 128, no longer applies New results: MWR, in print

Flow around bell shaped mountain Atmosphere at rest

LM_Z: RMS of Winds and temp. against radiosondes Frequ. Bias and threat score

Precipitation

Conclusions Existing physics interfaces and terrain following grids violate approximation conditions LM_RK: High order approximation LM_Z: Terrain intersecting method taken over from CFD Better flow over obstacles Better vertical velocities and precipitation