銀河団における超高エネルギー物理過程 w. Felix Aharonian (MPIK), 杉山直 ( 国立天文台 ) 井上 進 ( 国立天文台 ) w. Günter Sigl, Eric Armengaud (IAP) Francesco Miniati (ETH) ZeV GeV TeV 100.

Slides:



Advertisements
Similar presentations
Many different acceleration mechanisms: Fermi 1, Fermi 2, shear,... (Fermi acceleration at shock: most standard, nice powerlaw, few free parameters) main.
Advertisements

Modeling the SED and variability of 3C66A in 2003/2004 Presented By Manasvita Joshi Ohio University, Athens, OH ISCRA, Erice, Italy 2006.
GZK cutoff and constraints on the Lorentz invariance violation Bi Xiao-Jun (IHEP) 2011/5/9.
Status of Top-Down Models for the Origin of Ultra-High Energy Cosmic Rays I. Observation of ultra-high energy cosmic rays before the Pierre Auger Observatory.
2009 July 8 Supernova Remants and Pulsar Wind Nebulae in the Chandra Era 1 Modeling the Dynamical and Radiative Evolution of a Pulsar Wind Nebula inside.
Origin of Ultra High Energy Cosmic Rays Susumu Inoue (NAOJ) AGNs GRBs clusters astro-ph/ (brief review) collaborators: G. Sigl (APC), F. Miniati.
Ultrahigh Energy Cosmic Ray Nuclei and Neutrinos
Nuclei As Ultra High Energy Cosmic Rays Oleg Kalashev* UCLA, INR RAS GZK 40: The 3rd International Workshop on THE HIGHEST ENERGY COSMIC RAYS AND THEIR.
An update on the High Energy End of the Cosmic Ray spectra M. Ave.
Cosmic rays at the ankle vs GZK … … heavy composition vs anisotropies Cosmic rays at the ankle vs GZK … … heavy composition vs anisotropies Martin Lemoine.
Combined analysis of the spectrum and anisotropies of UHECRs Daniel De Marco Bartol Research Institute University of Delaware.
What can we learn from the GZK feature? Angela V. Olinto Astronomy & Astrophysics Kavli Institute Cosmol.Phys. Enrico Fermi Institute University of Chicago.
Radio Quiet AGNs as possible sources of UHECRs Based on work by Asaf Pe’er (STScI), Kohta Murase (Yukawa Inst.) & Peter Mészáros (PSU) October 2009 Phys.
07/05/2003 Valencia1 The Ultra-High Energy Cosmic Rays Introduction Data Acceleration and propagation Numerical Simulations (Results) Conclusions Isola.
Cosmological MHD Hui Li Collaborators: S. Li, M. Nakamura, S. Diehl, B. Oshea, P. Kronberg, S. Colgate (LANL) H. Xu, M. Norman (UCSD), R. Cen (Princeton)
Observational evidences of particle acceleration at SNRs Aya Bamba (RIKEN, Japan) and Suzaku team Suzaku Chandra.
Cosmic Rays Discovery of cosmic rays Local measurements Gamma-ray sky (and radio sky) Origin of cosmic rays.
Hard X-Rays & Gamma-Rays Induced by Ultra High Energy Proton Acceleration in Cluster Accretion Shocks Susumu Inoue Felix Aharonian Naoshi Sugiyama (NAO.
High-energy emission from the tidal disruption of stars by massive black holes Xiang-Yu Wang Nanjing University, China Collaborators: K. S. Cheng(HKU),
1 Tuning in to Nature’s Tevatrons Stella Bradbury, University of Leeds T e V  -ray Astronomy the atmospheric Cherenkov technique the Whipple 10m telescope.
Accelerators in the KEK, Tsukuba Mar. 14, Towards unravelling the structural distribution of ultra-high-energy cosmic ray sources Hajime.
Probing Extreme Universe through Ultra-High Energy Cosmic Ray Yamamoto Tokonatsu Konan University, Japan Introduction UHECR observation Recent results.
Molecular clouds and gamma rays
Potential Neutrino Signals from Galactic  -Ray Sources Alexander Kappes, Christian Stegmann University Erlangen-Nuremberg Felix Aharonian, Jim Hinton.
The TeV view of the Galactic Centre R. Terrier APC.
High energy emission from jets – what can we learn? Amir Levinson, Tel Aviv University Levinson 2006 (IJMPA, review)
18 May, 2006KAW4, Daejeon1 Astrophysical Sources of UHECRs Tom Jones University of Minnesota.
Summary(3) -- Dynamics in the universe -- T. Ohashi (Tokyo Metropolitan U) 1.Instrumentation for dynamics 2.Cluster hard X-rays 3.X-ray cavities 4.Dark.
Ultra High Energy Cosmic Rays: Strangers Shrouded In Mystery Scott Fleming High Energy Series 24 Feb
IceCube non-detection of GRB Neutrinos: Constraints on the fireball properties Xiang-Yu Wang Nanjing University, China Collaborators : H. N. He, R. Y.
The Origin and Acceleration of Cosmic Rays in Clusters of Galaxies HWANG, Chorng-Yuan 黃崇源 Graduate Institute of Astronomy NCU Taiwan.
Astrophysics of high energy cosmic-rays Eli Waxman Weizmann Institute, ISRAEL “New Physics”: talk by M. Drees Bhattacharjee & Sigl 2000.
Hajime Takami Institute for the Physics and Mathematics of the Universe, the University of Tokyo High Energy Astrophysics KEK, Tsukuba, Nov. 11,
Propagation of Ultra-high Energy Cosmic Rays in Local Magnetic Fields Hajime Takami (Univ. of Tokyo) Collaborator: Katsuhiko Sato (Univ. of Tokyo, RESCEU)
Humberto Salazar (FCFM-BUAP) for the Pierre Auger Collaboration, CTEQ- Fermilab School Lima, Peru, August 2012 Ultrahigh Cosmic Rays: The highest energy.
Paul Sommers Fermilab PAC Nov 12, 2009 Auger Science South and North.
High Energy Cosmic Rays Eli Waxman Weizmann Institute, ISRAEL.
Multi-Zone Modeling of Spatially Non-uniform Cosmic Ray Sources Armen Atoyan Concordia University, Montreal FAA60 Barcelona, 7 November 2012.
A.Z. Gazizov LNGS, Italy Based on works with V. Berezinsky and R. Aloisio Quarks-08.
April 23, 2009PS638 Tom Gaisser 1 Neutrinos from AGN & GRB Expectations for a km 3 detector.
1 NATURE OF KNEES AND ANKLE V.S. Berezinsky INFN, Laboratori Nazionali del Gran Sasso.
Ultra-High Energy Neutrino Fluxes Günter Sigl GReCO, Institut d’Astrophysique de Paris, CNRS  Neutrinos: A.
Gamma-Rays and UHE Cosmic Rays from Clusters of Galaxies Susumu Inoue (Nat. Astron. Obs. Japan) and collaborators GeV 100 keV HESS Auger GLAST Suzaku ZeV.
Newly Born Pulsars as Sources of High and Ultrahigh Energy Cosmic Rays Ke Fang University of Chicago ISCRA - Jul 9, KF, Kotera, Olinto 2012, ApJ,
Gamma-ray Bursts and Particle Acceleration Katsuaki Asano (Tokyo Institute of Technology) S.Inoue ( NAOJ ), P.Meszaros ( PSU )
Origin of high-energy cosmic rays Vladimir Ptuskin IZMIRAN.
Dongsu Ryu (CNU), Magnetism Team in Korea
Diffuse Emission and Unidentified Sources
52° Congresso SAIt 2008 Raffaella Bonino* for the Pierre Auger Collaboration ( * ) IFSI – INFN – Università di Torino.
November 1 - 3, nd East Asia Numerical Astrophysics Meeting KASI, Korea Shock Waves and Cosmic Rays in the Large Scale Structure of the Universe.
Propagation and Composition of Ultra High Energy Cosmic Rays
Potential Neutrino Signals from Galactic  -Ray Sources Alexander Kappes, Christian Stegmann University Erlangen-Nuremberg Felix Aharonian, Jim Hinton.
Masaki Yamaguchi, F. Takahara Theoretical Astrophysics Group Osaka University, Japan Workshop on “Variable Galactic Gamma-ray Source” Heidelberg December.
1 CEA mercredi 26 novembre 2007 Latest news from the Pierre Auger Observatory Nicolas G. Busca - APC - Paris 7.
A.Z. Gazizov LNGS, Italy Based on works with V. Berezinsky and R. Aloisio UHECR-08.
Hiroyasu Tajima Stanford Linear Accelerator Center Kavli Institute for Particle Astrophysics and Cosmology October 26, 2006 GLAST lunch Particle Acceleration.
Don Ellison, NCSU, Future HE-Observatory, SNR/CR Working Group Magnetic Field Amplification in Astrophysical Shocks 1)There is convincing evidence for.
Prospects of Identifying the Sources of the Galactic Cosmic Rays with IceCube Alexander Kappes Francis Halzen Aongus O’Murchadha University Wisconsin-Madison.
CHARGED COSMIC RAYS PHYSICS DETECTION OF RARE ANTIMATTER COMPONENTS LOW ENERGY PARTICLES (>GeV) HE ASTROPHYSICS.
Ultra High Energy Cosmic Rays: The disappointing model Askhat Gazizov LNGS, INFN, Italy in collaboration with Roberto Aloisio and Veniamin Berezinsky April.
On the Galactic Center being the main source of Galactic Cosmic Rays as evidenced by recent cosmic ray and gamma ray observations Yiqing Guo, Zhaoyang.
UHE Cosmic Rays from Local GRBs Armen Atoyan (U.Montreal) collaboration: Charles Dermer (NRL) Stuart Wick (NRL, SMU) Physics at the End of Galactic Cosmic.
Gamma Rays from the Radio Galaxy M87
銀河団における超(非)熱的過程 井上 進 (国立天文台) GLAST Suzaku + other topics GeV 100 keV
Alexander Kappes Francis Halzen Aongus O’Murchadha
Particle Acceleration in the Universe
ultra high energy cosmic rays: theoretical aspects
Predictions of Ultra - High Energy Neutrino fluxes
Massive star clusters as Sources of Galactic Cosmic Rays (arXiv:1804
A. Uryson Lebedev Physical Institute RAS, Moscow
Presentation transcript:

銀河団における超高エネルギー物理過程 w. Felix Aharonian (MPIK), 杉山直 ( 国立天文台 ) 井上 進 ( 国立天文台 ) w. Günter Sigl, Eric Armengaud (IAP) Francesco Miniati (ETH) ZeV GeV TeV 100 keV HESS Auger GLAST Suzaku UHE proton induced hard X-rays &  -rays UHE cosmic ray nuclei

cluster accretion shocks accretion (minor merger) (major) merger Ryu et al. 03 strong (high M ) shock -> high injection, hard spectra weak (low M ) shock -> low injection, soft spectra crucial for nonthermal high energy phenomena

UHECRs from cluster accretion shocks? Norman, Achterberg & Melrose ‘95 Kang, Ryu & Jones 96 Kang, Rachen & Biermann 97 GRB AGN jet clusters energetic requirements L cluster ~10 46 erg/s n cluster ~10 -6 Mpc -3 P cluster ~~10 40 erg s -1 Mpc eV u CR ~ erg cm -3  CR ~0.3(1) Gyr for p (Fe) P CR ~3x10 37 erg s -1 Mpc -3 massive clusters (~10 15 M  ) energetically plausible, but proton E max insufficient

UHE proton-induced pair emission from cluster accretion shocks accel. vs CMB losses, lifetime photopion lifetime escape accel. B s =0.1  G photopair accel. B s =1  G R s ~3.2 Mpc V s ~2200 km/s e.g. Coma-like cluster M=2x10 15 M  (T=8.3 keV) WMAP cosmo. parameters B s,eq ~ 6  G E max ~ eV photopair important t acc =(20/3)  r g c/V s 2 shock radius, velocity, etc. Bohm limit shock accel. SNR observations  ~1 e.g. Völk et al. 05 shock lifetime t s ~2 Gyr < t adiab ~6 Gyr max p energy Inoue, Aharonian & Sugiyama 2005 ApJ 628, L9

emitted flux & detectability Coma-like cluster at D=100 Mpc sensitivities for 1 deg 2 extended source - large radiative efficiency from protons - hard (  ~-1.5) spectrum + rollover - sensitive to B primary IC, pp  0 (  ~-2) > TeV absorption by IRB, CMB

Inoue, Gabici, Aharonian & Rowell, HESS proposal, accepted HESS   coming very soon!!! Suzaku X X TeV  -ray and hard X-ray observations of clusters Inoue, Nakazawa, Fukazawa et al., Suzaku proposal, submitted also expecting contributions from CANGAROO III

nuclei from cluster accretion shocks as UHECRs photopair+photopion CMB photodisint FIRB+CMB photodisint photopair B s =0.1  G B s =1  G B s ~1  G Johnston-Hollitt & Ekers ‘05 maximum E for heavy nuclei if B s ~1  G E Fe, max >~10 20 eV photopair important Inoue, Sigl, Armengaud & Miniati, in prep. UHE nuclei propagation calculations - realistic IGB models based on cosmological simulations - source density ~10 -6 Mpc -3 ∝ baryon density - E max (Z) from t acc vs. t loss, t life - Galactic CR-like source composition (n Fe /n p ~0.05) - interactions in CMB+FIRB, deflections in IGB including all secondary nuclei 56 Fe lifetime escape

UHE nuclei from clusters: results with IGB no IGB spectracomposition anisotropy spectra, anisotropy, composition consistent with current HiRes but not AGASA… predictions: - “GZK” cutoff >10 20 eV - heavy dominant >10 19 eV - one or few extended source(s) >4x10 19 eV

UHE nuclei induced pairs photodisint photopair B s =0.1  G B s =1  G 56 Fe 16 O lifetime escape photopair important additional hard X-ray and  -ray emission, broader spectra direct proof of nuclei acceleration in cluster accretion shocks

summary acceleration to E~ eV efficient secondary pair emission -> hard X sync. Suzaku, NeXT (imaging), … -> TeV IC HESS, CANG.III, other current IACTs important probe of UHE p acceleration, B in cluster outskirts, … UHE p-induced emission stay tuned for upcoming HESS & Suzaku observations! UHECR nuclei Fe acceleration to E~10 20 eV plausible if B~1  G UHECR flux and spectra consistent if n Fe /n p ~0.05 at source predictions for Auger, TA, EUSO: - spectra: cutoff >~10 20 eV - composition: p dominant ~ ~10 20 eV - anisotropy: a few extended sources >~4x10 19 eV additional hard X/TeV from pairs HESS, Suzaku, … UHE processes in cluster accretion shocks

proton injection luminosity in accretion shocks accretion rate & luminosity M(M,z)=f gas f acc V s 3 /G L acc (M,z)=f gas f acc GMM/R s ~2.7x10 46 (f gas /0.16) (f acc /0.1) (M/ 2x10 15 M  ) 5/3 erg/s proton luminosity & spectrum L p (M,z)=f p L acc (M,z) f p =0.1 F p (E,M,z) ∝ E -2 exp(-E/E max ) secondary production and emission processes p+  CMB → p+ e + e - E p ~10 18 eV E +- ~  +- E p ~10 15 eV, L +- ~t +- /t inj f(E> eV) L p → e + e - +B(~  G) → syn. E  ~keV-MeV e + e - +  CMB → IC E  ~TeV-PeV Aharonian 02 code solve proton & pair kinetic eq...

model vs Coma data - hard X? need large p luminosity - radio something else sensitivities for 1 deg 2 extended source hard X data <1 deg

UHECRs: energy losses during propagation p+  CMB → p+ e + e - E p >~5x10 17 eV p+  CMB → p+  E p >~7x10 19 eV D p, 20eV <~100 Mpc A+  FIRB → A+ e + e - A+  FIRB → A-iN +iN

intergalactic B fields models based on cosmological simulations Sigl, Miniati & Ensslin 03,04 1. shock generation2. uniform seed normalized to cluster magnetic fields source distribution N s =10 -6 Mpc -3, ∝ baryon density randomly distribute, many realizations

source composition Sigl & Armengaud 05 observed Galactic CR at low E heavy elements enhanced, Fe/p~0.1 observed Galactic CR at high E further enhanced? 15 eV Hoerandel 05 “Galactic CR-like” observed metallicity at cluster outskirts ~0.1 solar Finoguenov et al 03

current data on UHE composition Watson astro-ph/ E>2x10 19 eV: no data at all! (too low statistics) - E<2x10 19 eV: much greater uncertainties than often advertised

With field: Isotropy consistent with current statistics Without field: probably too anisotropic due to low source density No anisotropy for ~100 events above 4x10 19 eV. Significant anisotropy should appear for > 1000 events above 4x10 19 eV. for 1 particular realization results: sky map