Toledo, MPA access methods and plans With contributions from JHU : Alex Szalay, Jan Vanderberg MPA: Jeremy Blaizot,

Slides:



Advertisements
Similar presentations
Trying to Use Databases for Science Jim Gray Microsoft Research
Advertisements

World Wide Telescope mining the Sky using Web Services Information At Your Fingertips for astronomers Jim Gray Microsoft Research Alex Szalay Johns Hopkins.
Building a Mock Universe Cosmological nbody dark matter simulations + Galaxy surveys (SDSS, UKIDSS, 2dF) Access to mock catalogues through VO Provide analysis.
John Cunniffe Dunsink Observatory Dublin Institute for Advanced Studies Evert Meurs (Dunsink Observatory) Aaron Golden (NUI Galway) Aus VO 18/11/03 Efficient.
Eötvös University Budapest in the Network.  Seniors: István Csabai (node coordinator): »Photometric redshift estimation, virtual observatories, science.
Applications of UDFs in Astronomical Databases and Research Manuchehr Taghizadeh-Popp Johns Hopkins University.
18 July Monte Carlo Markov Chain Parameter Estimation in Semi-Analytic Models Bruno Henriques Peter Thomas Sussex Survey Science Centre.
How special are brightest group and cluster galaxies? Anja von der Linden et al., 2007, MNRAS, 379, 867 On the prevalence of radio-loud active galactic.
Galaxy merging in the Millennium simulation Serena Bertone - UC Santa Cruz Chris Conselice - U. Nottingham arXiv: MNRAS, in press Cosmoclub, April.
Why Environment Matters more massive halos. However, it is usually assumed in, for example, semianalytic modelling that the merger history of a dark matter.
Data-Intensive Computing in the Science Community Alex Szalay, JHU.
“ Testing the predictive power of semi-analytic models using the Sloan Digital Sky Survey” Juan Esteban González Birmingham, 24/06/08 Collaborators: Cedric.
Teaching Science with Sloan Digital Sky Survey Data GriPhyN/iVDGL Education and Outreach meeting March 1, 2002 Jordan Raddick The Johns Hopkins University.
GIANT TO DWARF RATIO OF RED-SEQUENCE GALAXY CLUSTERS Abhishesh N Adhikari Mentor-Jim Annis Fermilab IPM / SDSS August 8, 2007.
QCDgrid Technology James Perry, George Beckett, Lorna Smith EPCC, The University Of Edinburgh.
Spatial Indexing and Visualizing Large Multi-dimensional Databases I. Csabai, M. Trencséni, L. Dobos, G. Herczegh, P. Józsa, N. Purger Eötvös University,
László Dobos, Tamás Budavári, Alex Szalay, István Csabai Eötvös University / JHU Aug , 2008.IDIES Inaugural Symposium, Baltimore1.
Millennium Data Dissemination MPA institute seminar1 possible extensions how ambitious can/should we be?
TIG session 3+Millennium database Millennium Database Overview and some first usage experiences Gerard Lemson and the Virgo Consortium astro-ph/
Theory in the German Astrophysical VO Summary: We show results of efforts done within the German Astrophysical Virtual Observatory (GAVO). GAVO has paid.
Spatial Indexing of large astronomical databases László Dobos, István Csabai, Márton Trencséni ELTE, Hungary.
SDSS-KSG 08 Workshop1 The SDSS DR7 and KIAS SDSS mirror Won-Kee Park ARCSEC, Sejong University 2008 SDSS-KSG Workshop.
Cosmological simulations in a relational database: modelling and storing merger trees Gerard Lemson, GAVO, Max-Planck-Institut für extraterrestrische Physik,
Dissemination of simulations in the Virtual Observatory Gerard Lemson German Astrophysical Virtual Observatory, Max-Planck Institute for extraterrestrial.
Theory in the Virtual Observatory Gerard Lemson, GAVO.
Full Spectral Analysis of Galaxies - Are we there yet? Ben Panter, Edinburgh
EÖTVÖS UNIVERSITY BUDAPEST Department of Physics of Complex Systems VO Spectroscopy Workshop, ESAC Spectrum Services 2007 László Dobos (ELTE)
VOMegaPlot Efficient Plotting of Large VOTable Datasets.
1 Database Management Systems: part of the solution or part of the problem? Clive Page 2004 April 28.
Indexing and Visualizing Multidimensional Data I. Csabai, M. Trencséni, L. Dobos, G. Herczegh, P. Józsa, N. Purger Eötvös University,Budapest.
Wiss. Beirat AIP, ClusterFinder & VO-Methods H. Enke German Astrophysical Virtual Observatory ClusterFinder VO Methods for Astronomical Applications.
Measuring dark energy from galaxy surveys Carlton Baugh Durham University London 21 st March 2012.
Sean Passmoor Supervised by Dr C. Cress Simulating the Radio Sky.
A PPARC funded project Workflow and Job Control in Astrogrid Jeff Lusted Dept Physics and Astronomy University of Leicester.
SDSS photo-z with model templates. Photo-z Estimate redshift (+ physical parameters) –Colors are special „projection” of spectra, like PCA.
Gap-filling and Fault-detection for the life under your feet dataset.
Millennium Data Dissemination databases and other services Millennium Workshop1.
PHY306 1 Modern cosmology 3: The Growth of Structure Growth of structure in an expanding universe The Jeans length Dark matter Large scale structure simulations.
CMU-CS lunch talk, Gerard Lemson1 Computational and statistical problems for the Virtual Observatory With contributions from/thanks to: GAVO.
GES 2007, The German Astrophysical Virtual Observatory (GAVO) Knowledge Networking for Astronomy in Germany and abroad Gerard Lemson 1,2, Wolfgang.
The Astro-Wise Federation … staying connected Lorentz center, Monday, 31 March 2008.
The International Virtual Observatory Alliance (IVOA) interoperability in action.
Modeling the dependence of galaxy clustering on stellar mass and SEDs Lan Wang Collaborators: Guinevere Kauffmann (MPA) Cheng Li (MPA/SHAO, USTC) Gabriella.
Ching-Wa Yip Johns Hopkins University.  Alex Szalay (JHU)  Rosemary Wyse (JHU)  László Dobos (ELTE)  Tamás Budavári (JHU)  Istvan Csabai (ELTE)
The 6dF Galaxy Redshift Survey: Status Report and Data Release 2 Heath Jones ANU/AAO Will Saunders AAO Mike Read Edinburgh Matthew Colless AAO 100,000.
German Astrophysical Virtual Observatory Overview and Results So Far W. Voges, G. Lemson, H.-M. Adorf.
Gerard Lemson Theory in the VO and the SimDB specification Euro-VO DCA workshop Garching, June 26, 2008 Feedback questionnaire.
Strasbourg, EURO-VO DCA First Board Meeting (GA)VO projects at MPG(E) and participation in VO-DCA (tbcd) Wolfgang Voges, Gerard Lemson.
Theory in the VO, Garching, Theory in the Virtual Observatory (TVO) Goals of Euro-VO DCA WP4 Gerard Lemson, GAVO ARI-ZAH, Heidelberg MPE, Garching.
Web based spectrum databases and utilities László Dobos Tamás Budavári István Csabai MAGPOP kick-off meeting, January Cassis.
1 Analysing Cosmological Simulations in the Virtual Observatory: Designing and Mining the Millennium Simulation Database Gerard Lemson German Astrophysical.
Reproducing the Observed Universe with Simulations Qi Guo Max Planck Institute for Astrophysics MPE April 8th, 2008.
The Stellar Assembly History of Massive Galaxies Decoding the fossil record Raul Jimenez Licia Verde UPenn Alan Heavens Ben.
Locations. Soil Temperature Dataset Observations Data is – Correlated in time and space – Evolving over time (seasons) – Gappy (Due to failures) – Faulty.
Budapest Group Eötvös University MAGPOP kick-off meeting Cassis 2005 January
Simulation Production System Science Advisory Committee Meeting UW-Madison March 1 st -2 nd 2007 Juan Carlos Díaz Vélez.
Stellar populations and their kinematics from high and medium resolution spectra: mixed inversions P. Ocvirk, A. Lançon, C. Pichon, Observatoire de Strasbourg.
JENAM 2008 Theory Standards for the Virtual Observatory SimDB + SimDAP.
A self consistent model of galaxy formation across cosmic time Bruno Henriques Simon White, Peter Thomas Raul Angulo, Qi Guo, Gerard Lemson, Volker Springel.
Light-cone data format and ray-tracing tools
Simulation Production System
Percolation analysis for cosmic web with discrete points
The mock galaxy catalogue for HI survey based on SAMs of galaxy formation 富坚 Guiyang, FRA2015 Shanghai Astronomical Observatory.
Virtual Observatory for cosmological simulations
Clustering, Proximity, and Balrog
Google Sky.
Modeling the dependence of galaxy clustering on stellar mass and SEDs
Core of Coma Cluster (optical)
Bandpass and Spectrum Services for the VO
Cameron Bell Luke Doolittle Amod Ghangurde
Presentation transcript:

Toledo, MPA access methods and plans With contributions from JHU : Alex Szalay, Jan Vanderberg MPA: Jeremy Blaizot, Jarle Brinchmann, Guinevere Kauffmann, Anja von der Linden, Ben Panter, Guo Qi, Volker Springel, Vivienne Wild

Toledo, MPA Last year, Budapest Presented milli-Millennium halo merger tree database Requests: –More properties (lambda,...) X –Galaxies V –Correlation with environment (galaxies in voids) V –Millennium Why use databases ? Ask Alex.

Toledo, MPA Current status milli-Millennium –Galaxies added: merger trees, links to their parent halos –Density field at various smoothings –Updated web site (demo)demo Millennium subset –Subset (~2%, 10x milli-Mil) of halo and galaxy trees –Z=0 density field Millennium –Halo trees in database (proprietary) –SAM galaxies under way (settle on model etc) –Density fields at all Z will be added: rows Durham –milli_Millennium mirror (Postgres) –Durham halo tree and galaxy catalogues

Toledo, MPA Other databases ROSAT: source catalogues and RASS photons (~100 million) SDSS Peripherals –SDSS_MPA (Brinchman, Kauffmann, Tremonti et al) –MOPED (Ben Panter) –SDSS_PCA (Vivienne Wild et al) GalICS (Jeremy Blaizot) HEALPix all sky maps (Alex Szalay, Tony Banday) –wmap (3 year data soon !) –extinction maps –radio maps (Bonn) –ROSAT background (hopefully)

Toledo, MPA Access Public: Local web apps to Millennium, BESTDR3 and peripherals: Public web browser queries limited (1min, rows) Local databases + web apps less limited

Toledo, MPA Streaming Query results temporarily buffered on server: memory Streaming queries: faster, less limited (only timeout) Access: –IDL (with Ben Panter) wget –http-user=*** --http-password=*** -O localfile.csv * from moped..agebin * from moped..agebin GUI asking for username/password Interprets CSV stream, turned into IDL components –TOPCATTOPCAT

Toledo, MPA Plans: Millennium Millennium: –Tune database halos N x galaxies 63 x 256^3 density field grid cells –More halo properties (shape, λ,...) –More galaxy catalogues different parameters different algorithms (GalICS, Durham,...) –Light cone mock catalogues –Galaxy spectra (+ PCA) –Links to SDSS mirror and peripherals –Proper metadata handling (ala SkyServer) –"SAM online„ –Move webapps to MPA –Use JHU services, install CAS jobs

Toledo, MPA Plans: SDSS mirror + peripherals Make mirror web site public Upgrade SDSS mirror to DR4 … Stabilize, document, publish SDSS peripherals Proper metadata handling Links to Millennium Personal databases: MyDB (ala SkyServer) Add logos

Toledo, MPA Theory VO: spectra Combine theory and observations Example: query-by-example on theory spectra Find similar spectra, from these the actual galaxy formation history Chi-squared on all stored spectra ? Slow, requires storing all of them Idea (not original, see HVO/JHU talks): use PCA to compress data

Toledo, MPA PCA Need training sample of theory spectra to create eigenspectra Project all spectra Store PCA amplitudes in DB Provide web service: –Upload (observational) spectrum (IVOA SSA/SED) –Project onto theory eigenspectra –Use amplitudes as parameters in query for “nearby” amplitudes –Return corresponding theory spectra –Return corresponding galaxy formation histories, or their halos, or their environment …

Toledo, MPA Issues Dealing with errors, gaps: “gappy PCA” (Connolly & Szalay) Normalization: –incoming spectrum in general from very different dataset, needs common normalization –Incoming set will have gaps, errors –Ad hoc normalization possible (and works quite good) Indexing of complex multi-dimensional point set for quick nearest k neigbours search (Voronoi ? See Laszlo‘s work)

Toledo, MPA Normalized gappy PCA Fit normalization factor at same time as PCA amplitudes. Model: Minimize (over a i and N ) :

Toledo, MPA

Toledo, MPA

Toledo, MPA

Toledo, MPA So far Ran PCA on BC03 stochastic bursts (Vivienne) On first GalICS+milli-Millennium spectra (Jeremy) Projected SDSS spectra on both Defined a PCA data model/schema Stored PCAs in database TOPCAT

Toledo, MPA PCA data model (RDB schema available)

Toledo, MPA

Toledo, MPA

Toledo, MPA milliMil-GalICS PC1 vs PC2 Voronoi tesselation

Toledo, MPA Issues for query-by-example Overlap quite good, but good enough ? GalICS spread less than SDSS. BC03 comparable with SDSS, but different slope. Systematics –Model: physics very preliminary (see Blaizot & de Lucia?) resolution effects –Preprocessing SDSS galaxies Rebinning: different algorithms give comparable results (slightly) wrong redshift ? Can be easily simulated –Projection algorithm: normalization does not affect outcome –Observational systematics: use virtual telescope (+virtual spectrograph) to test on the theory spectra. Easier to blow up simulation than to shrink observation cloud

Toledo, MPA Comments Millennium database being used for science projects (Guo Qi) SDSS peripherals used for science projects (see Vivienne’s talk, Ben Panter) Use of mydb for debugging and testing (Jeremy) Please give comments, feedback.