Chapter 10: Altstädt, V.: Testing of Composite Materials. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2.

Slides:



Advertisements
Similar presentations
3/8/2002, Friday Toughness.
Advertisements

Chapter 11.1: Heat Distorsion Resistance. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 11.1.
Design of Structural Elements
Fracture, Toughness and Strength by Gordon Williams.
Chapter 7 Fracture: Macroscopic Aspects. Goofy Duck Analog for Modes of Crack Loading “Goofy duck” analog for three modes of crack loading. (a) Crack/beak.
ME 240: Introduction to Engineering Materials Chapter 8. Failure 8.1 CHAPTER 8.
Elisabeth Bouchaud GROUPE FRACTURE Service de Physique et Chimie des Surfaces et des Interfaces CEA-Saclay The Chinese University of Hong-Kong, September.
Chapter 9 Fracture Testing
Normal Strain and Stress
Chapter 7 Mechanical Properties of Solids.
High Temperature Composites Rutgers University Federal Aviation Administration Advanced Materials Flammability Atlantic City, NJ October 24, 2001.
Engineering materials lecture #14
P P h 2h B a Pre-crack End block Double Cantilever Beam (DCB) test geometry Used to determine mode I failure strength of composite materials δ (J/m 2 )
Chapter 12: Michel, B.: Testing of Microcomponents. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition.
3 Torsion.
High strain rate characterization of unidirectional carbon-epoxy IM in transverse compression and in-plane shear via digital image correlation Pedro.
Simulation of Pillar Failure Using FRACOD 2D. Objective n To test the capability of FRACOD 2D in predicting failure of a pillar between two rock excavations.
Basic Mechanisms of Fracture in Metals
The role of delamination in failure of fibre-reinforced composites by M. R. Wisnom Philosophical Transactions A Volume 370(1965): April 28, 2012.
UNIVERSITY OF THE BASQUE COUNTRY
Lecture #19 Failure & Fracture
CM 197 Mechanics of Materials Chap 14: Stresses in Beams
The Role Of Scaled Tests In Evaluating Models Of Failure Michael R. Wisnom
Tests of Hardened Concrete. Stress Balance for equilibrium  loads = external forces  internal forces = stress Axial tension.
CH3 MICROMECHANICS Assist.Prof.Dr. Ahmet Erklig. Ultimate Strengths of a Unidirectional Lamina.
Mechanics of Materials Goal:Load Deformation Factors that affect deformation of a structure P PPP Stress: intensity of internal force.
Sandwich Construction Thin composite skins bonded to thicker, lightweight core. Large increase in second moment of area without weight penalty. Core needs.
Vacuum, Surfaces & Coatings Group Technology Department Glassy Carbon Tests at HiRadMat 14 March 2014 C. Garion2 Outline: Introduction Context: Transparent.
How to fabricate optimum/complex materials from single materials
Chapter 4.1: Lüpke, T.: Fundamental Principles of Mechanical Behaviour. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich.
Fig.: 7.1 Chapter 7: Ramsteiner, F.: Evaluating Environmental Stress Cracking Restistance. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl.
Mechanical properties of insulators for Accelerator Magnets WAMSDO 14/11/2011 George Ellwood 1.
École Polytechnique Fédérale de Lausanne (EPFL),
Chapter 4 FRAC TURE   TOUGHNESS.
Poisson’s Ratio For a slender bar subjected to axial loading:
Fig.: 6.1 Chapter 6.1: Thermal Properties. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition thermic.
9 Torsion.
Fig.: 5.1 Chapter 5: Fracture Toughness Measurements in Engineering Plastics. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag,
Transformations of Stress and Strain
Poisson’s Ratio For a slender bar subjected to axial loading:
If A and B are on the same side of the origin (i. e
3 Torsion.
Jiangyu Li, University of Washington Yielding and Failure Criteria Plasticity Fracture Fatigue Jiangyu Li University of Washington Mechanics of Materials.
3 Torsion.
Exam 2 Grade Distribution. Stress-strain behavior (Room T): Ideal vs Real Materials TS
Project “The development of the didactic potential of Cracow University of Technology in the range of modern construction” is co-financed by the European.
Outline Introduction Objectives Experimental Program Results and Discussion Conclusions References 2 Steel Structure-2015, November 18, 2015.
EML 4230 Introduction to Composite Materials
Testing Methods for Composites
MECHANICS OF MATERIALS Fourth Edition Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Texas Tech University CHAPTER.
1 MFGT 104 Materials and Quality Compression, Shear, Flexural, Impact Testing Professor Joe Greene CSU, CHICO.
Bend Testing.
Problems 1. A large plate is fabricated from a steel alloy that has a plane strain fracture toughness of 82.4MPa√m. If, during service use, the plate is.
Dr S R Satish Kumar, IIT Madras1 IS 800:2007 Section 8 Design of members subjected to bending.
Mechanical properties of dental biomaterials 2
IS 800:2007 Section 8 Design of members subjected to bending
SANDWICH COMPOSITE BEAMS for STRUCTURAL APPLICATIONS
Chapter 4. Mechanical Testing: Tension Test and Other Basic Tests
ACI Fall 2016 Convention-Philadelphia
Failure of epoxy resins
Mechanical Properties
Poisson’s Ratio For a slender bar subjected to axial loading:
By Prof. M. ELMESSIRY Textile Eng. Department Alexandria university
Imperial College OF SCIENCE TECHNOLOGY AND MEDICINE Department of Aeronautics Failure Analysis of a Composite Wingbox with Impact Damage:- A Fracture.
Mechanical Properties of Metals
Poisson’s Ratio For a slender bar subjected to axial loading:
3 Torsion.
Strain Transformation
Update on Fracture Analyses
Poisson’s Ratio For a slender bar subjected to axial loading:
Presentation transcript:

Chapter 10: Altstädt, V.: Testing of Composite Materials. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 10.1 relative costs 70 % 13 % 14 % 3 % component tests part component tests detail tests coupon tests

plastic zone resin matrix fiber 8-10 µm b a resin G (J m ) Ic -2 composite G Ic (J m -2 ) :1 Chapter 10: Altstädt, V.: Testing of Composite Materials. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 10.2

standard carbon-fiber IM carbon-fiber laminate fracture toughness G (J m ) IIc -2 residual compressive strength after impact (MPa) Chapter 10: Altstädt, V.: Testing of Composite Materials. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 10.3

0 +45 [0/+45/90/-45] S Chapter 10: Altstädt, V.: Testing of Composite Materials. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 10.4

specimen plate test tensile compressionshear flexure laminating winding ring 0°-ring 90°-tube tube plate Chapter 10: Altstädt, V.: Testing of Composite Materials. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 10.5

cap strip adhesive layer specimen  Chapter 10: Altstädt, V.: Testing of Composite Materials. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 10.6

Chapter 10: Altstädt, V.: Testing of Composite Materials. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 10.7

linear analysis planar analysis a b Chapter 10: Altstädt, V.: Testing of Composite Materials. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 10.8

fiber orientation in the cap strip ° cap strip clamping devices 15 45° Chapter 10: Altstädt, V.: Testing of Composite Materials. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 10.9

Chapter 10: Altstädt, V.: Testing of Composite Materials. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 10.10

cap strip clamping devices center holes (optional) 2–10 Chapter 10: Altstädt, V.: Testing of Composite Materials. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 10.11

center holes (optional) 2–10 Chapter 10: Altstädt, V.: Testing of Composite Materials. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 10.12

specimen brittle failure with smooth fracture surface brittle failure with brush-like fracture surface Chapter 10: Altstädt, V.: Testing of Composite Materials. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 10.13

A B C D  (%) 0.05 % – 0.25 % secant line  (MPa) Chapter 10: Altstädt, V.: Testing of Composite Materials. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 10.14

Chapter 10: Altstädt, V.: Testing of Composite Materials. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 10.15

failure buckling shear failure in-plane failure caused by longitudinal crack formation brooming Chapter 10: Altstädt, V.: Testing of Composite Materials. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 10.16

g/h EP/CF A B C B  (MPa) Chapter 10: Altstädt, V.: Testing of Composite Materials. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 10.17

strength modulus load application by the front face of the specimen d c b a Chapter 10: Altstädt, V.: Testing of Composite Materials. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 10.18

b a c Chapter 10: Altstädt, V.: Testing of Composite Materials. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 10.19

load application by four-point bending cover layer 1 honeycomb cover layer 2 F/2 compression failure d 1 d 2 F/2 d < d 1 2 Chapter 10: Altstädt, V.: Testing of Composite Materials. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 10.20

Chapter 10: Altstädt, V.: Testing of Composite Materials. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 10.21

Chapter 10: Altstädt, V.: Testing of Composite Materials. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 10.22

L = 8 d = v = 1.25 mm min v = 1 mm min 25 L d = 4 [0] [ 45] L = d = L d = 5 [0] [ 45] ba Chapter 10: Altstädt, V.: Testing of Composite Materials. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 10.23

45° -45° 10° 45° 10° + off-axis tensile test Iosipescu shear test two-rail three-rail shear test Chapter 10: Altstädt, V.: Testing of Composite Materials. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 10.24

150 45° cap strip clamping devices 25 45° specimen x y strain gauge x 45 Chapter 10: Altstädt, V.: Testing of Composite Materials. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 10.25

determination of G 12  ’ =  ’’ =  ’  12  ’’  (MPa) 12 Chapter 10: Altstädt, V.: Testing of Composite Materials. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 10.26

150 45° cap strip clamping device 25 45° specimen x y strain gauge rosette x 10° Chapter 10: Altstädt, V.: Testing of Composite Materials. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 10.27

F 45° strain gauge R 8 b a Chapter 10: Altstädt, V.: Testing of Composite Materials. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 10.28

tensile or compression loading center beam slips through the guide strain gauge b a Chapter 10: Altstädt, V.: Testing of Composite Materials. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 10.29

b a F movable adjustable jaw rigid strain gauge base plate shear plane 90° d=12.7 w Chapter 10: Altstädt, V.: Testing of Composite Materials. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 10.30

F/2 Chapter 10: Altstädt, V.: Testing of Composite Materials. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 10.31

–3.5 Chapter 10: Altstädt, V.: Testing of Composite Materials. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 10.32

Chapter 10: Altstädt, V.: Testing of Composite Materials. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 10.33

mode I plane crack opening mode II in-plane shear mode III out-of-plane shear Chapter 10: Altstädt, V.: Testing of Composite Materials. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 10.34

glued loading blocks 3–5 mm a = 50 mm B = 20 mm distance 10 mm hinge bands 225 mm Chapter 10: Altstädt, V.: Testing of Composite Materials. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 10.35

a 1 a 2 AA v (mm) L F (N) Chapter 10: Altstädt, V.: Testing of Composite Materials. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 10.36

a 2d F Chapter 10: Altstädt, V.: Testing of Composite Materials. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 10.37

a L L d Chapter 10: Altstädt, V.: Testing of Composite Materials. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 10.38

4ENF-specimen base plate a L 01 2 Chapter 10: Altstädt, V.: Testing of Composite Materials. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 10.39

a 2d L F Chapter 10: Altstädt, V.: Testing of Composite Materials. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 10.40

2d c F rotation center a LL back gauge and stirrup Chapter 10: Altstädt, V.: Testing of Composite Materials. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 10.41

shear layer clamping layer F a L B F d 2 d 1 Chapter 10: Altstädt, V.: Testing of Composite Materials. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 10.42

-30/90  x Chapter 10: Altstädt, V.: Testing of Composite Materials. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 10.43

specimen with hole F F ba Chapter 10: Altstädt, V.: Testing of Composite Materials. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 10.44

peel arm (thickness d) clamped arm of the laminate  peel angle peel load F laminate (width B) b a Chapter 10: Altstädt, V.: Testing of Composite Materials. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 10.45

peel load F peel arm 1 peel arm 2   specimen (width B) b a Chapter 10: Altstädt, V.: Testing of Composite Materials. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 10.46

rigid layer flexible layer b a Chapter 10: Altstädt, V.: Testing of Composite Materials. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 10.47

impact 500 µm Chapter 10: Altstädt, V.: Testing of Composite Materials. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 10.48

A (Nm) H EP/CF BMI/CF A (mm ) s 2 Chapter 10: Altstädt, V.: Testing of Composite Materials. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 10.49

strain gauges impact position b a Chapter 10: Altstädt, V.: Testing of Composite Materials. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 10.50

EP/CF BMI/CF A (Nm) H  (MPa) M Chapter 10: Altstädt, V.: Testing of Composite Materials. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 10.51

 (MPa) M EP/CF BMI/CF A (mm 2 ) s Chapter 10: Altstädt, V.: Testing of Composite Materials. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 10.52