The FVTX Technology Outline Overall Picture Silicon Detector

Slides:



Advertisements
Similar presentations
A “BTeV” Hybrid Pixel Telescope for MTest David Christian May 4, 2007.
Advertisements

H1 SILICON DETECTORS PRESENT STATUS By Wolfgang Lange, DESY Zeuthen.
The ATLAS Pixel Detector
ATLAS SCT Endcap Detector Modules Lutz Feld University of Freiburg for the ATLAS SCT Collaboration Vertex m.
1 ACES Workshop, March 2011 Mark Raymond, Imperial College. Two-in-one module PT logic already have a prototype readout chip for short strips in hand CBC.
Victoria04 R. Frey1 Silicon/Tungsten ECal Status and Progress Ray Frey University of Oregon Victoria ALCPG Workshop July 29, 2004 Overview Current R&D.
Terra-Pixel APS for CALICE Progress meeting 10 th Nov 2005 Jamie Crooks, Microelectronics/RAL.
July 10, 2008 PHENIX RPC review C.Y. Chi 1 RPC Front End Electronics On chamber discriminator  The strips  The CMS discriminator chips  The discriminator.
PHENIX Vertex Tracker Atsushi Taketani for PHENIX collaboration RIKEN Nishina Center RIKEN Brookhaven Research Center 1.Over view of Vertex detector 2.Physics.
Sept 25, 2008 PHENIX RPC review C.Y. Chi 1 RPC Front End Electronics On chamber discriminator  The strips  The CMS discriminator chips  The discriminator.
The first testing of the CERC and PCB Version II with cosmic rays Catherine Fry Imperial College London CALICE Meeting, CERN 28 th – 29 th June 2004 Prototype.
November Vertex 2002 Kazu Hanagaki1 Layer 0 in D0 Silicon Tracker for run2b Kazu Hanagaki / Fermilab for D0 run2b Silicon Tracker group Motivation.
BTeV Trigger Architecture Vertex 2002, Nov. 4-8 Michael Wang, Fermilab (for the BTeV collaboration)
The LHCb Inner Tracker LHCb: is a single-arm forward spectrometer dedicated to B-physics acceptance: (250)mrad: The Outer Tracker: covers the large.
STATUS OF THE CRESCENT FLEX- TAPES FOR THE ATLAS PIXEL DISKS G. Sidiropoulos 1.
Performance of the DZero Layer 0 Detector Marvin Johnson For the DZero Silicon Group.
VELO upgrade electronics – HYBRIDS Tony Smith University of Liverpool.
The BTeV Tracking Systems David Christian Fermilab f January 11, 2001.
David L. Winter for the PHENIX Collaboration PHENIX Silicon Detector Upgrades RHIC & AGS Annual Users' Meeting Workshop 3 RHIC Future: New Physics Through.
SVX4 chip 4 SVX4 chips hybrid 4 chips hybridSilicon sensors Front side Back side Hybrid data with calibration charge injection for some channels IEEE Nuclear.
ATLAS Tracker Upgrade Stave Collaboration Workshop Oxford 6-9 February 2012 ABC 130 Hybrid.
Jon S Kapustinsky 11/17/2010 Jon S Kapustinsky FVTX Commissioning Plan 1.71 Jon S Kapustinsky 1.
Leo Greiner IPHC testing Sensor and infrastructure testing at LBL. Capabilities and Plan.
1 Module and stave interconnect Rev. sept. 29/08.
David M. Lee Forward Vertex Detector Cost, Schedule, and Management Plan Participating Institutions Organizational plan Cost Basis R&D Costs.
U N C L A S S I F I E D FVTX Detector Readout Concept S. Butsyk For LANL P-25 group.
Gerd J. Kunde - LANL1 The FVTX Technology  Outline Overall Picture Silicon Detector –Geometry, Layout, Process Readout Chip –FNAL Chips, New Chip PHX.
Pixel hybrid status & issues Outline Pixel hybrid overview ALICE1 readout chip Readout options at PHENIX Other issues Plans and activities K. Tanida (RIKEN)
January 22, 1999SciFi L1 Trigger Review 1 Analog Hardware Front-end Board (CTT_FE) –Transmit (and split) the VLPC signal to the Multi-chip Modules –Discriminate.
HBD FEM the block diagram preamp – FEM cable Status Stuffs need to be decided….
Leo Greiner IPHC DAQ Readout for the PIXEL detector for the Heavy Flavor Tracker upgrade at STAR.
Update on the HBD Craig Woody BNL DC Meeting June 8, 2005.
F February 5, 2001 Pixel Detector Size and Shape David Christian Fermilab.
PXL Cable Options LG 1HFT Hardware Meeting 02/11/2010.
Muon trigger upgrades, missing since not aimed towards DOE funding PHENIX upgrades: view presented to DOE R&D $3.5M Construction $16.6M Au-Au p-p 200 Si-Si.
ASIC R&D at Fermilab R. Yarema October 30, Long Range Planning Committee2 ASICs are Critical to Most Detector Systems SVX4 – CDF & DO VLPC readout.
03/12/07 Jon S Kapustinsky LANL Jon S Kapustinsky, LANL Forward Vertex Detector Collaboration Meeting UNM, March 12, 2007 Outline: FVTX Overall Description.
Leo Greiner PIXEL Hardware meeting HFT PIXEL detector LVDS Data Path Testing.
The Inclusive (Measurement ) FVTX aka iFVTX sponsored by LANL-DR in FY ‘06-08 FPIX Chip Module/Hybrid Testcard Pixel Plane Assembly/Integration.
Beam Tests of 3D Vertically Interconnected Prototypes Matthew Jones (Purdue University) Grzegorz Deptuch, Scott Holm, Ryan Rivera, Lorenzo Uplegger (FNAL)
The PHENIX Forward Silicon Vertex Tracker Eric J. Mannel IEEE NSS/MIC October 29, 2013.
NUMI Off Axis NUMI Off Axis Workshop Workshop Argonne Meeting Electronics for RPCs Gary Drake, Charlie Nelson Apr. 25, 2003 p. 1.
Swadhin Taneja Stony Brook University On behalf of Vertex detector team at PHENIX Collaboration 112/2/2015S. Taneja -- DNP Conference, Santa Fe Nov 1-6.
Vertex Detector Options and R&D Requirements Upgrade DC Meeting December 11, 2002 Yuji Goto (RIKEN/RBRC) for the Silicon USG.
The BTeV Pixel Detector David Christian Fermilab June 17, 2010.
March 9, 2005 HBD CDR Review 1 HBD Electronics Preamp/cable driver on the detector. –Specification –Schematics –Test result Rest of the electronics chain.
1 07/10/07 Forward Vertex Detector Technical Design – Electronics DAQ Readout electronics split into two parts – Near the detector (ROC) – Compresses and.
Valerio Re, Massimo Manghisoni Università di Bergamo and INFN, Pavia, Italy Jim Hoff, Abderrezak Mekkaoui, Raymond Yarema Fermi National Accelerator Laboratory.
BTeV Hybrid Pixels David Christian Fermilab July 10, 2006.
Solid State Detectors for Upgraded PHENIX Detector at RHIC.
Proposal for LST-based IFR barrel upgrade Roberto Calabrese Ferrara University Workshop on IFR replacement, SLAC, 11/14/2002.
U N C L A S S I F I E D Precision Tracking for the PHENIX Muon Arms Gerd J. Kunde ASI Prague 2005.
D. M. Lee, LANL 1 07/10/07 Forward Vertex Detector Overview Technical Design Overview Design status.
Fermilab Silicon Strip Readout Chip for BTEV
David M. Lee Forward Vertex Detector Cost, Schedule, and Management Plan Participating Institutions Organizational plan Cost Basis R&D Costs.
Terra-Pixel APS for CALICE Progress meeting 10 th Nov 2005 Jamie Crooks, Microelectronics/RAL.
Upgrade with Silicon Vertex Tracker Rachid Nouicer Brookhaven National Laboratory (BNL) For the PHENIX Collaboration Stripixel VTX Review October 1, 2008.
1 FANGS for BEAST J. Dingfelder, A. Eyring, Laura Mari, C. Marinas, D. Pohl University of Bonn
B => J/     Gerd J. Kunde PHENIX Silicon Endcap  Mini-strips (50um*2mm – 50um*11mm)  Will not use ALICE chip  Instead custom design based on.
Pixel Sensors for the Mu3e Detector Dirk Wiedner on behalf of Mu3e February Dirk Wiedner PSI 2/15.
GGT-Electronics System design Alexander Kluge CERN-PH/ED April 3, 2006.
SVD FADC SVD-PXD Göttingen, 25 September 2012
Evidence for Strongly Interacting Opaque Plasma
INFN Pavia and University of Bergamo
Silicon Pixel Detector for the PHENIX experiment at the BNL RHIC
RPC Front End Electronics
SVT detector electronics
RPC Front End Electronics
SVT detector electronics
PHENIX forward trigger review
Presentation transcript:

The FVTX Technology Outline Overall Picture Silicon Detector Geometry, Layout, Process Readout Chip FNAL Chips, New Chip PHX Detector Module Wedges, Lampshades Data Path FPGA Interface Board Concept, Potential Implementation Overview on R&D Issues Summary Gerd J. Kunde - LANL

FVTX Tracker Executive Summary Four lampshade stations on each side Mini-strips of 50 micron radial pitch: 2.2 -13 mm Readout via new PHX chip from Fermi Nat’l Lab Total strip count: ~ 2 * 860,000 strips (zero suppressed) Total chip count: ~ 2 * 1680 chips Total silicon area: ~ 2 *3350 cm2 Gerd J. Kunde - LANL

The Inner Volume of Phenix 78 cm 66 cm 45 cm Mechanical Design for VTX and FVTX by LANL & Hytec Gerd J. Kunde - LANL

Current VTX & FVTX Specifications Barrel Section i-radius length strips/pixel layer 1 2.5 cm 21.8 cm pixel layer 2 5 cm layer 3 10 cm 31.8 cm strip layer 4 14 cm 38.2 cm 1.2% 2.0% ministrip 18 cm 38 cm station 4 32 cm station 3 10.6cm 26 cm station 2 6.6 cm 20 cm station 1 tilt = 22 deg o-radius z-start(+-) Endcap (north and south) Rad. Length 1 % Gerd J. Kunde - LANL

FVTX Part of VERTEX Spreadsheet Gerd J. Kunde - LANL

Silicon Detector Technical Overview 200 micron thickness 50 micron radial pitch (z reconstruction) curved or straight strips ? (R&D) 1280,2048,2816 “mini-strips” 3.5 cm < r < 18 cm < 1.5 % occupancy (central AA) 48 “double towers” in phi mini-strips from 13.0 mm to 2.2 mm readout via PHX 5,8,11 chip row r = 18.0 cm 2816 2048 1280 r = 3.5 cm 1 PHX derived from FNAL chips Gerd J. Kunde - LANL

Only “2 ½” Silicon Detector types 50 micron strips (collaboration with Prague groups) Outside Detector (II) Inside Detector (I) Outside Detector (III) 5 chips= 1280 * 2 strips 706.2 mm^2 6 chips= 1536 * 2 strips 1698.5 mm^2 3 chips= 768 * 2 strips 752.0 mm^2 Gerd J. Kunde - LANL

Two Silicon Wafer Layout Concepts n+ pixels on n substrate using “moderated p-spray” as the n-isolation technology Proven ATLAS/BTev technology with existing qualified vendors We assume 4 inch - 200 um wafers, the layout is matching the need of inner and outer detectors: Inner: 77 wafers + contingency Outer: 96 wafers + contingency Gerd J. Kunde - LANL

Silicon Sensor Schedule Gerd J. Kunde - LANL

Existing FNAL Chip: FPIX2.1 Features Advanced mixed analog/digital design 128 rows x 22 columns (2816 channels) 50 µm x 400 µm pixels High speed readout intended for use in Level 1 trigger. Up to 840 Mbits/sec data output. Very low noise, excellent threshold matching DC coupled input Fully programmable device Output directly drives long cable (10 m, 30 feet) 90 mirco watt/pixel (~0.25 watt/chip) Rad hard to 50 Mrads Change geometry for PHX-chip and adjust analog front end to mini-strips capacity Gerd J. Kunde - LANL

FPIX 2.1 Pixel Circuit (50 x 400 µm) FPIX2: 60 e-rms measured noise @ c=0 pf 3 bit ADC Signal/Noise ~ 50/1 Threshold/Noise ~ 10/1 for mini-strips on 200 um Si PHX Simulation 2 mm to 10 mm strip length Gerd J. Kunde - LANL

FPIX 2 Module: “Real” Threshold and Noise CHIP 4 CHIP 4 These are typical distribution curves for threshold and noise for a real chip on an 8 chip HDI. (A mip gives 16,000 electrons in 200 micron) Gerd J. Kunde - LANL

Measured FPIX 2 Power Consumption The power consumption of the 8 chip module is: for (VD=VA=2.5V) 1.86W Module idle. 2.26W Module collecting data.*  100 micro watt/channel for (VD=VA=2.2V) 1.51W Module idle. 1.83W Module collecting data.*  80 micro watt/channel * 8 chip module collecting data at 300Mbps. The power consumption variation due temperature change (delta=100ºC) was less than 0.05 W. Gerd J. Kunde - LANL

512 bumps plus inter-chip bumps ~ 15 wafers needed signals & power FNAL Collaboration Ray Yarema’s group Bump bonds Programming interface Discriminator Pipeline Digital interface PHX Chip Layout: 2 columns 256 channels/column 3.8 mm x 13 mm = 49.4 mm2 Thinned to 150 to 200 um Bump bonds on 200 um pitch 50 µm dia solder bumps 512 bumps plus inter-chip bumps ~ 15 wafers needed Keep all digital backend the same ! Adjust only input and geometry, optimize the row/column structure for readout speed and add pulser. Bus on chip ? Gerd J. Kunde - LANL

PHX Bus R&D FNAL Proposal: Power & Data Bus on Chip PHX PHX Kapton FNAL Proposal: Power & Data Bus on Chip Kapton PHX PHX 200 um Silicon Detector Preliminary calculations by R.Yarema show that the I-R loss is acceptable, need optimize number of signal lines per chip R&D necessary …. fallback solution is Flex Cable with Wire Bonding Gerd J. Kunde - LANL

~3400 chips but only 80 Watts per Endcap FVTX Power Numbers added for both sides ! ~3400 chips but only 80 Watts per Endcap Gerd J. Kunde - LANL

PHX Chip Development Schedule Gerd J. Kunde - LANL

FVTX Wedge Assembly 2 silicons in front 3 mm carbon wedge for assembly and cooling 2 silicons in back Eliminate dead silicon areas by overlapping 1 mm along edges …. Carbon Fiber Support and Cooling Gerd J. Kunde - LANL

From Wedges to Lampshades X 24 Total strip count: ~ 2 * 860,000 strips Total chip count: ~ 2 * 1680 chips Total silicon area: ~ 2 * 3350 cm2 Gerd J. Kunde - LANL

FVTX Connections Copper Flex (Fiber) 5 x 512 channels Fiber 4 Gbit/s Slow Control ~100 Hz Serializer Optical Driver 48 per station 48 per station Copper Cables Copper Bus 61 LVDS Pairs LVDS 4 x 169.8 MBit Hit: 9 bit address ,3 bit adc, 4 bit chip-id, tag 8bit => 24 bits 6 x 512 channels 5 x 512 channels R&D Project: Flex Cables or Fiber to the ‘outside world’ ? Space Constraints (see W.Sondheim) Costs/Complexity/Reliability Serializer/Fiber Collaboration ? Gerd J. Kunde - LANL

FVTX Copper Connection Wire Count D.Christian Slide FVTX Copper Connection Wire Count Per wedge: 6x2=12 wires BCO clock Shift In Shift Out Shift Control Reset MC Per chip: Data out (x1,2,4,6) DLCLK 11 chips/wedge… assume we use DLCLK: 1 serial pair/chip: 6 pairs+11x2 pairs = 28 pairs 2 serial pairs/chip: 6 pairs + 11x3 pairs = 39 pairs 4 serial pairs/chip: 6 pairs + 11x5 pairs = 61 pairs Power and Bias ‘Round Cable’ ala CDF/D0 Gerd J. Kunde - LANL

Board(green) and fiber optic connector(orange) FVTX Connections III Board(green) and fiber optic connector(orange) 12 fibers per connector 160 mm 30mm 24 Fiber MPO Connector (x8) Samtech QSS-RA100 .635mm pitch Connector (7mmx54mm) R&D Project: Flex Cables or Fibers the ‘outside world’ ? Space Constraints (see W.Sondheim) Gerd J. Kunde - LANL

Electronics Readout Concept Event Tag chip download Driver (buffer) FPGA PHENIX DCM Copper ~140 Mbits/s Data out <1.5 % Occupancy in AA central Level 1 possible fiber copper Level 1 Accept PHX/FPIX2 is zero suppressed !!! To Level 1 trigger processor T&FC Fvtx Interface Board Slow controls In Detector In Counting House Gerd J. Kunde - LANL

R&D on Data Acquisition (Number of Readout Lines, Clock Speed & FPGA Memory) Layers Ganged channels/chip chips/ board channels/ board Occupancy Interactions/ 64 clocks Real Hits/ 64 Clocks Real data size/64 clocks (kbits) Noise Clocks Noise Hits/ 64 Clocks Noise data size/64 clocks (kbits) Buffer needed for 64 clocks (kbits) Number of Readout Lines Readout Time/data word (nsec) Readout Latency (beam clocks) Noise Hits/chip needed to Fall Behind Noise Rate/chip Readout Clock Speed (Mbps) 1 512 11 5632 0.015 84.48 2.03 0.001 64 360.4 8.7 10.7 212.4 17.4 0.5 113 4 44 22528 337.92 8.11 1441.8 34.6 42.7 2 106.2 0.9 35.3 2.9 2.8 169.8 6 35.4 R & D has started under LANL DR grant First FVTX readout meeting (Columbia/ISU/LANL) held 12/5/2005 at BNL Gerd J. Kunde - LANL

FVTX DAQ INTERFACE BOARD Conventional Copper Cable Serial download to chips Pass beam clock Initialize/Reset Arcnet (FPGA program., chip download) T+FC On Silicon 11?, 41?/FPGA Trigger? Near Silicon Outside IR Conventional Copper Cable or Serializer/Optical Driver Data Buffer, FPGA Time to process=? DCM 2.5 Gb/s PHX 1,2,4,(6) lines/chip Stream of 24-bit data words with: Location (3 bit ADC) Beam Clock Counter 140Mbps readout lines can drive 10 m Uses custom or commercial driver Buffers Data Upon lvl1 grab relevant data Build packet DataDCM/Lvl1 Pass beam clock Initialize chips PHENIX Standard ISU Level 1 Board (SBIR) New development of FIB and firmware (Columbia/LANL) Gerd J. Kunde - LANL

The FIB Concept (FVTX Interface Board) (with input from Chi,FNAL + Columbia) Gerd J. Kunde - LANL

FVTX Research & Development Silicon Detector Adapt/modify existing design Straight or curved strips PHX Chip Low risk modification of existing design Analog input, row/column structure, pulser New development Bus on chip Interfacing Flex copper cables or Fibers R&D Transition Board FVTX Interface Board (FIB) and firmware DAQ/Slow Control Mechanics/Cooling integrated in VTX solution See W. Sondheim’s presentation Gerd J. Kunde - LANL

FVTX Summary North and South: 4 Station Precision Silicon Tracker for the Muon Arms BTeV (ATLAS) Technology for Detector and Readout Chip R&D Schedule (needs to start now) FVTX (DAQ) Interface Board with FPGA and Firmware R &D started under LANL grant Collaboration with Columbia/ISU Mechanics covered in next talk Detailed Schedule in Dave’s talk Gerd J. Kunde - LANL

BACKUP Slides on the FVTX Gerd J. Kunde - LANL

FNAL Chip Comparison Chip All 50 µm spacing Noise Threshold σ Ministrip Readout type speed Trigger possible Power per chan Geometry r-phi SVX4 128 ch S/N -12/1 yes Pipeline 53 MHz no 2mW FSSR 250 e 440 e Data push 840 Mb 3 mW Yes FPIX3 2816 ch 220 e 125 e Data Push 90 µW PHX 512 ch 125e Signal 24000 e for 300 µm Si Sensor, thinning desirable for small material budget Gerd J. Kunde - LANL

FPIX2.1 Pixel Cells 50 x 400 um Preamp 2nd stage +disc Kill/ inject R.Yarema Slide FPIX2.1 Pixel Cells 50 x 400 um 12 µm bump pads Preamp 2nd stage +disc Kill/ inject ADC encoder Digital interface ADC Gerd J. Kunde - LANL

Power Considerations Must minimize IR drops R.Yarema Slide Power Considerations Must minimize IR drops Reduce number of chips on bus Design full custom low power analog and digital sections Maximize power bus size on chip Use back side contact Possibly use cooling structure for ground return Gerd J. Kunde - LANL

Voltage Drop Estimation R.Yarema Slide Voltage Drop Estimation Units are connected as shown Each unit consumes current What is the IR drop at the output of the last unit? n identical units Gerd J. Kunde - LANL

Runit Estimation (one chip is a unit) R.Yarema Slide Runit Estimation (one chip is a unit) Gerd J. Kunde - LANL

FPIX2 uses 60mA of Analog Current and 60mA of Digital Current. R.Yarema Slide Iunit Estimation FPIX2 uses 60mA of Analog Current and 60mA of Digital Current. It is fairly accurate to use the FPIX2 Analog Current as an estimation of the Phoenix Mini Strip Analog Current. It is conservative to use the FPIX2 Digital Current as an estimation of the Phoenix Mini Strip Digital Current Phenix Mini Strip will not read out at 840MBits/sec Phenix Mini Strip will not have as many inputs and outputs Gerd J. Kunde - LANL

R.Yarema Slide Iunit Estimation Gerd J. Kunde - LANL

ΔV Estimation Full Tower -OR- Split Tower Inner Segment Outer Segment R.Yarema Slide ΔV Estimation Full Tower -OR- Split Tower Inner Segment Outer Segment Gerd J. Kunde - LANL

Noise Performance of FPIX2 at Higher Detector Capacitance R.Yarema Slide Noise Performance of FPIX2 at Higher Detector Capacitance Gerd J. Kunde - LANL

Phenix Chip Analog Input Simulations R.Yarema Slide Phenix Chip Analog Input Simulations Simulated FPIX2 first and second stage response for detector capacitances from 0 to 2 pF in 0.25 pF steps First stage Second stage Gerd J. Kunde - LANL

Phenix Chip Analog Simulations R.Yarema Slide Phenix Chip Analog Simulations Simulated 1st and 2 nd stage risetime (10-90%) with different detector capacitance First stage Second stage Gerd J. Kunde - LANL

Phenix Chip I/O Ideas R.Yarema Slide Separate analog and digital power buses Should operate over wide power supply range (due to IR drops) Common backside ground Clocks Input clock – 100 ns Separate readout clock? Serial programming interface input Serial data output Chip ID Cell number? Channel ID Trigger input Control line(s) Gerd J. Kunde - LANL

FPIX2 noise at C = 0 is about 60 erms FPIX2 Threshold Distribution @ Cin= 0 pf is 125 erms R.Yarema Slide FPIX2 on the Bench Measurements FPIX2 noise at C = 0 is about 60 erms Gerd J. Kunde - LANL

Pixel/Strip Sizes and Capacity R.Yarema Slide Pixel/Strip Sizes and Capacity FPIX 50 x 400 um Cin = .25 pF Phenix 50 x 2000 to 11000 um Cin = .2-1.1 pF SVX 50 x 105 to 3x105 um Cin = 10-30 pF Design for Phenix should be optimized for correct detector capacitance Gerd J. Kunde - LANL

First Simulations for PHX Chip at FNAL R.Yarema Slide First Simulations for PHX Chip at FNAL First stage Second stage Simulated FPIX2 first and second stage response for detector capacitances from 0 to 2 pF in 0.25 pF steps Gerd J. Kunde - LANL

Possible Layout Diagram for PHX Chip R.Yarema Slide Possible Layout Diagram for PHX Chip Bump bonds Programming interface 1st and 2nd stage and discriminator Pipeline Digital interface Gerd J. Kunde - LANL

BACKUP Slides on the iFVTX Gerd J. Kunde - LANL

The Inclusive (Measurement ) FVTX aka iFVTX sponsored by LANL-DR in FY ‘06-08 Inclusive Heavy Quark Measurement in A-A 4 planes Existing Chips FPIX 2.1 Existing 8 Chip Modules Prototype FPGA Readout Gerd J. Kunde - LANL

Aligned with Sweet Spot of Muon Half-Octant iFVTX Aligned with Sweet Spot of Muon Half-Octant Constraints by barrel Same Volume as FVTX Enclosure Half-Octant Gerd J. Kunde - LANL

BTeV-Sensors at FNAL Each wafer contains: 1 “4-chip” module G.Cardoso Slide BTeV-Sensors at FNAL Individual pixels are identical to ATLAS sensors. Number of rows & columns and overall size customized for BTeV. Oxygenated “moderated p-spray” n+-in-n sensors made by TESLA Each wafer contains: 1 “4-chip” module 3 “6-chip” modules 3 “5-chip” modules 2 “8-chip” modules These are the modules used in the baseline design; number on wafer chosen to reflect usage. 5 “1-chip” sensors Gerd J. Kunde - LANL

8 Chip Module HDI designed by Fermilab/CD made by Dyconex: G.Cardoso Slide 8 Chip Module HDI designed by Fermilab/CD made by Dyconex: Dimensions: 111.0mm x 11.1mm + 2x 10.0mm x 11.1 mm tabs Line width: 50m Line to line clearance: 50m Metal layer thickness: 12m Number of layers: 4 Via pad/hole: 150/70m Lamination: 25m epoxy Film thickness (polymide): 50m HDI CAD top layer. HDI + 8 bare die chips. HDI + 8 chips with detector. (SINTEF PSPRAY) Gerd J. Kunde - LANL

G.Cardoso Slide LANL R&D Collaboration with FNAL to get Multichip Modules in January 2006 This is a photograph ! HDI TEST CARD 1 Silicon with 8 readout chips on HDI Silicon from TESLA (Czech Republic) Gerd J. Kunde - LANL

HDI to PIFC wire-bonding G.Cardoso Slide HDI to PIFC wire-bonding … 11.1mm 8.53mm 200um 1.47mm 1mm Data and control LV HV pad DVDD&GND AVDD&GND Power PIFC Data PIFC Gerd J. Kunde - LANL

BTeV Pixel - Flex Cross Section G.Cardoso Slide BTeV Pixel - Flex Cross Section 4 Layer Flex Circuit Cross Section Silicon Sensor Adhesive Layer 3 Layer 2 Bias Window Gold Epoxy Metal Layer 4 Metal Layer 3 Metal Layer 2 Metal Layer 1 Analog Digital Digital lines Ground High Voltage Flex Circuit Analog lines Layer 1 Bias Pad (1mm 2 ) Gerd J. Kunde - LANL

Pixel Multichip Module – Baseline Design G.Cardoso Slide Pixel Multichip Module – Baseline Design Gerd J. Kunde - LANL

Prototype pixel module G.Cardoso Slide Prototype pixel module FPIX2 Silicon Sensor HDI Support Structure Wire bonds NOT TO SCALE Gerd J. Kunde - LANL

G.Cardoso Slide MODULE UNDER TEST Gerd J. Kunde - LANL

iFVTX plane with Twelve 8-Chip Modules 12/2005 iFVTX plane with Twelve 8-Chip Modules Cooling PCB VHDMSignals Power TPG FPIX on HDI Wire Bonds HV Bias Pulser Wire Bonded Flex Cable go to Pole Face Board Gerd J. Kunde - LANL

iFVTX Two Type of Planes 12 8-chip modules 8 8-chip modules Gerd J. Kunde - LANL

iFVTX 3-d Layout (concept) Gerd J. Kunde - LANL

iFVTX Transition to the Outside World The Pole Face Board Printed Circuit Board Feed through via multilayer board Flex Wire Bond Area Outside connectors Cables come for iFVTX planes to inside connectors Gerd J. Kunde - LANL

Test Setup at LANL we are working with a FNAL chip since July 2005 Chip Response LA Display Logic Analyzer DVM DAQ Low Voltage Invisible: Clean Power and Scope and Pulser Test Board Gerd J. Kunde - LANL

BACKUP Slides on the FSSR Hybrid Gerd J. Kunde - LANL

Hybrid FSSR 40mm Pigtail solder pads Decoupling capacitors G.Cardoso Slide Hybrid Prototype 4 layer FR4 board, ~ 1mm thick. Copper traces, 17um thick. 75um traces/spacing. Production 4 layer BeO board, ~ 500um thick. Gold traces, 10um thick. 75um traces/spacing. FSSR 40mm Pigtail solder pads Decoupling capacitors Termination resistors 75mm Gerd J. Kunde - LANL

Pigtail Connector Pigtail Pigtail Hybrid G.Cardoso Slide 3cm Soldered to hybrid. Connects hybrid to flex cable. Avoids having a connector on hybrid. 2 layer, 100um traces/spacing, broadside coupled differential lines (LVDS). Pigtail Connector Pigtail Hybrid 3cm Gerd J. Kunde - LANL

Flex Cable ... 50cm G.Cardoso Slide Connects pigtail to Junction Card. Length depends on station position. 2 layer, 100um traces/spacing, broadside coupled differential lines (LVDS). 50cm HV HV GND AGND DGND DVDD AVDD ... Differential pairs and sense wires NOT TO SCALE 1cm 2.5cm 0.5cm Gerd J. Kunde - LANL

G.Cardoso Slide Pitch Adapter Gerd J. Kunde - LANL