DESY superconducting SASE FEL’s Jean-Paul Carneiro DESY Hamburg.

Slides:



Advertisements
Similar presentations
Behavior of the TTF2 RF Gun with long pulses and high repetition rates (TESLA note ) Jean-Paul Carneiro DESY Hamburg TESLA COLLABORATION MEETING.
Advertisements

1 Optimal focusing lattice for XFEL undulators: Numerical simulations Vitali Khachatryan, Artur Tarloyan CANDLE, DESY/MPY
Tessa Charles Australian Synchrotron / Monash University 1 Bunch Compression Schemes for X-band FELs.
1 Bates XFEL Linac and Bunch Compressor Dynamics 1. Linac Layout and General Beam Parameter 2. Bunch Compressor –System Details (RF, Magnet Chicane) –Linear.
IWBS 2004 Winni DeckingWinni Decking Beam Stability Challenges at the European XFEL Winfried Decking DESY, Hamburg, Germany IWBS 2004.
First operation of the TTF2 injector with beam Jean-Paul Carneiro DESY Hamburg TESLA COLLABORATION MEETING DESY Hamburg, 16 Sept 2003.
CALCULATIONS OF THE LCLS INJECTOR USING ASTRA Jean-Paul Carneiro DESY Hamburg ICFA Future Light Sources Sub-Panel Mini Workshop on Start-to-End Simulations.
The BESSY Soft X-Ray SASE FEL (Free Electron Laser)
Latest results from the upgraded PITZ facility Chase Boulware, DESY, Zeuthen, Germany, for the PITZ collaboration cathode laser conditioning test stand.
Siegfried Schreiber, DESY The TTF Laser System Laser Material Properties Conclusion? Issues on Longitudinal Photoinjector.
Superconducting Accelerating Cryo-Module Tests at DESY International Workshop on Linear Colliders 2010 (ECFA-CLIC-ILC Joint Meeting) Denis Kostin, MHF-SL,
The Fermilab Photo-Injector Jean-Paul Carneiro (Fermilab & Université Paris XI) For the A0 group (N. Barov, M. Champion, D. Edwards, H. Edwards, J. Fuerst,
SRF Results and Requirements Internal MLC Review Matthias Liepe1.
New Electron Beam Test Facility EBTF at Daresbury Laboratory B.L. Militsyn on behalf of the ASTeC team Accelerator Science and Technology Centre Science.
FEL Beam Dynami cs FEL Beam Dynamics T. Limberg FEL driver linac operation with very short electron bunches.
Photocathode 1.5 (1, 3.5) cell superconducting RF gun with electric and magnetic RF focusing Transversal normalized rms emittance (no thermal emittance)
Steve LidiaICFA Workshop, Chia LagunaJuly, 2002 Flat Beam Photoinjectors for Ultrafast Synchrotron Radiation Sources Steve Lidia Lawrence Berkeley National.
Low Emittance RF Gun Developments for PAL-XFEL
TTF-II Status & Prospectives Nick Walker DESY 5 th ITRP Meeting – CALTECH.
TTF2 Start-to-End Simulations Jean-Paul Carneiro DESY Hamburg TESLA COLLABORATION MEETING DESY Zeuthen, 22 Jan 2004.
Recent Experiments at PITZ ICFA Future Light Sources Sub-Panel Mini Workshop on Start-to-End Simulations of X-RAY FELs August 18-22, 2003 at DESY-Zeuthen,
FLASH Operation at DESY From a Test Accelerator to a User Facility Michael Bieler FLASH Operation at DESY WAO2012, SLAC, Aug. 8, 2012.
- ﴀ J.Bähr, PITZ, Technisches Seminar, 3.Juli, PITZ Shutdown 2007 J.Bähr PITZ, DESY Technisches Seminar 3.Juli 2007.
Yujong Kim The Center for High Energy Physics, Korea DESY Hamburg, Germany Alternative Bunch Compressors.
Electron Source Configuration Axel Brachmann - SLAC - Jan , KEK GDE meeting International Linear Collider at Stanford Linear Accelerator Center.
Free-Electron Laser at the TESLA Test Facility More than 50 institutes from 12 countries are involved in the TESLA Project The TESLA Collaboration: Three.
1 Plan and Opportunities for Migration and Integration of the Photoinjector into New Muon Lab Mike Church AAC Review - 12/5/06.
F Photoinjector for the ILC test facility at Fermilab Sergei Nagaitsev Fermilab May 24, 2007.
FLASH II. The results from FLASH II tests Sven Ackermann FEL seminar Hamburg, April 23 th, 2013.
Beam Dynamics and FEL Simulations for FLASH Igor Zagorodnov and Martin Dohlus Beam Dynamics Meeting, DESY.
DESY / Hans Weise TTF / VUV-FEL Status and Some Words of Fast Kickers Hans Weise / DESY DESY meeting with KEK ILC Delegation (March 7th 2005)
Max Cornacchia, SLAC LCLS Project Overview BESAC, Feb , 2001 LCLS Project Overview What is the LCLS ? Transition from 3 rd generation light sources.
Basic Energy Sciences Advisory Committee MeetingLCLS February 26, 2001 J. Hastings Brookhaven National Laboratory LCLS Scientific Program X-Ray Laser Physics:
Progress and Plans for R&D and the Conceptual Design of the ILC Main Linacs H. Hayano, KEK PAC2005 5/18/2005.
P I T Z Photo Injector Test Facility Zeuthen Design consideration of the RF deflector to optimize the photo injector at PITZ S.Korepanov.
DaMon: a resonator to observe bunch charge/length and dark current. > Principle of detecting weakly charged bunches > Setup of resonator and electronics.
Round-to-Flat Beam Transformation and Applications Yine Sun Accelerator System Division Advanced Photon Source Argonne Nation Lab. International Workshop.
UCLA Claudio Pellegrini UCLA Department of Physics and Astronomy X-ray Free-electron Lasers Ultra-fast Dynamic Imaging of Matter II Ischia, Italy, 4/30-5/3/
S2E (start-to-end) Simulations at DESY T. Limberg TESLA Collaboration Meeting in Frascati, May 2003.
TESLA Linear Collider project overview and linac technology R. Brinkmann, DESY ITRP Meeting, RAL Jan. 28, 2004.
김 귀년 CHEP, KNU Accelerator Activities in Korea for ILC.
First Electrons at the Fermilab superconducting test accelerator Elvin Harms Asian Linear Collider Workshop 2015, Tsukuba 24 April 2015.
ICFA Workshop on Future Light Source, FLS2012 M. Shimada A), T. Miyajima A), N. Nakamura A), Y. Kobayashi A), K. Harada A), S. Sakanaka A), R. Hajima B)
J. Corlett. June 16, 2006 A Future Light Source for LBNL Facility Vision and R&D plan John Corlett ALS Scientific Advisory Committee Meeting June 16, 2006.
Round-to-Flat Beam Transformation and Applications
Construction, Commissioning, and Operation of Injector Test Facility (ITF) for the PAL-XFEL November 12, 2013 S. J. Park, J. H. Hong, C. K. Min, I. Y.
What did we learn from TTF1 FEL? P. Castro (DESY).
X-band Based FEL proposal
PAL-XFEL Commissioning Plan ver. 1.1, August 2015 PAL-XFEL Beam Dynamics Group.
Applications of transverse deflecting cavities in x-ray free-electron lasers Yuantao Ding SLAC National Accelerator Laboratory7/18/2012.
B. Marchetti R. Assmann, U. Dorda, J. Grebenyuk, Y. Nie, J. Zhu Acknowledgements: C. Behrens, R. Brinkmann, K. Flöttmann, M. Hüning,
Beam dynamics for an X-band LINAC driving a 1 keV FEL
Sara Thorin, MAX IV Laboratory
E-XFEL Status and First Beam Results
LLRF'15 Workshop, Shanghai, Nov. 4, 2015
Slice Parameter Measurements at the SwissFEL Injector Test Facility
NC Accelerator Structures
Accelerators in a new light
Accelerator Layout and Parameters
XFEL Project (accelerator) Overview and recent developments
Review of Application to SASE-FELs
Experimental Optimization and Characterization of Electron Beams for Generating IR/THz SASE FEL Radiation with PITZ. P. Boonpornprasert, G. Asova1, Y.
What did we learn from TTF1 FEL?
Electron Source Configuration
Injector: What is needed to improve the beam quality?
Advanced Research Electron Accelerator Laboratory
Selected simulations for XFEL photo injector
LCLS FEL Parameters Heinz-Dieter Nuhn, SLAC / SSRL April 23, 2002
Introduction to Free Electron Lasers Zhirong Huang
Electron Optics & Bunch Compression
Presentation transcript:

DESY superconducting SASE FEL’s Jean-Paul Carneiro DESY Hamburg

THE TESLA COLLABORATION (12 countries, 55 institutes, status 01/2004) CANDLE Yerevan Yerevan Physics Institute, Yerevan IHEP, Beijing Tsingua University, Beijing Peking University Institute of Physics, Helsinki CEA/DSM DAPNIA CE-Saclay LAL Orsay IPN Orsay RWT, Hochschule, Aachen BESSY, Berlin Hahn-Meitner Institut, Berlin Max-Born-Institut, Berlin Technische Universität Berlin Technische Universität Darmstadt Technische Universität Dresden Universität Frankfurt GKSS-Forschungszentrum Geesthacht DESY Hamburg and Zeuthen Universität Hamburg Forschungszentrum Karlsruhe Universität Rostock Bergische Universität-GH Wuppertal CCLRC-Daresbury and Rutherford Appleton Laboratory Royal Holloway, University of London Queen Mary, University of London University College London University of Oxford Laboratori Nazionali di Frascati INFN Legnaro INFN Milan INFN Rome II Sincrotrone Trieste Institut of Nuclear Physics, Cracow University of Mining and Metallurgy, Cracow Soltan Institut for Nuclear Studies, Otwock-Swierk High Pressure Research Center, Warsaw Institute of Physics, Warsaw Polish Atomic Energy Agency, Warsaw Faculty of Physics, University of Warsaw CIEMAT, Madrid PSI, Villigen ANL, Argonne, Il FNAL, Batavia, Il MIT, Cambridge, MA Cornell University, NJ UCLA, Los Angeles, CA Jlab, Newport News, VA MEPI, Moscow ITEP, Moscow BINP, Novosibirsk BINP, Protvino IHEP, Protvino INR, Troitsk JINR, Dubna Jean-Paul Carneiro, FNAL, 16-Sept-04 2 DESY superconducting SASE FEL’s

Basic principle of the Self Amplified Spontaneous Emission (SASE) Description of DESY superconducting SASE FEL’s Tesla Test Facility, Phase 1 (TTF1) Tesla Test Facility, Phase 2 (TTF2) Status of the European XFEL OUTLINE Jean-Paul Carneiro, FNAL, 16-Sept-04 3 DESY superconducting SASE FEL’s

Basic principle of SASE  High peak brilliance (exceeding storage rings by several order of magnitudes).  High degree of transverse coherence close to saturation Spontaneous emission Saturation Exponential Growth Jean-Paul Carneiro, FNAL, 16-Sept-04 4 DESY superconducting SASE FEL’s

 Successful demonstration of FEL saturation for sub-micrometers wavelengths : LEUTL : 385 nm (Sept. 2000) TTF1 : shortest wavelengths obtained at TTF1 at DESY (1 st 98 nm in Sept. 2001) saturation obtained from 80 nm to 120 nm FEL saturation for sub-micrometer wavelengths Jean-Paul Carneiro, FNAL, 16-Sept-04 5 DESY superconducting SASE FEL’s

Tesla Test Facility, Phase 1 BC2 ACC1 RF GUN UNDULATOR Booster Cavity ACC2 To FEL diagnostics Dump BC1 First beam in 1996 with a thermoionic gun Operated from Dec to Nov using the FNAL photo-injector Total length of the accelerator : ~ 120 meters, Energy : MeV. Jean-Paul Carneiro, FNAL, 16-Sept-04 6 DESY superconducting SASE FEL’s

Tesla Test Facility, Phase 1 Photo-injector, Capture Cavity and Cryo-Modules Undulator Jean-Paul Carneiro, FNAL, 16-Sept-04 7 DESY superconducting SASE FEL’s

Tesla Test Facility, Phase 1 BC2 ACC1 RF GUN UNDULATOR Booster Cavity ACC2 To FEL diagnostics Dump BC1 Jean-Paul Carneiro, FNAL, 16-Sept-04 8 DESY superconducting SASE FEL’s

Tesla Test Facility, Phase 1 / BC2 compression upstream BC2downstream BC2 Jean-Paul Carneiro, FNAL, 16-Sept-04 9 DESY superconducting SASE FEL’s

Tesla Test Facility, Phase 1 / Radiation Characteristics BC2 ACC1 RF GUN UNDULATOR Booster Cavity ACC2 To FEL diagnostics Dump BC1 Photons Radiation wavelength : nm FWHM radiation pulse duration : fs Energy in the radiation pulse : µJ Radiation peak power level : ~1.5 GW Jean-Paul Carneiro, FNAL, 16-Sept DESY superconducting SASE FEL’s ASTRA ELEGANTASTRA Reference : (TTF1 Start-to-End Simulations of SASE FEL at the TESLA Test Facility, Phase 1, DESY PREPRINT , M. Dohlus, et Al.)

Tesla Test Facility, Phase 1 / FEL saturation Average energy in the radiation pulse Vs active undulator length (numerical simulations with the FAST code) Courtesy of M. Yurkov Jean-Paul Carneiro, FNAL, 16-Sept DESY superconducting SASE FEL’s

Tesla Test Facility, Phase 1 / FEL radiation Measurement of transverse coherence of the TTF1 FEL radiation Courtesy of R. Ischebeck Jean-Paul Carneiro, FNAL, 16-Sept DESY superconducting SASE FEL’s

Au film (15 nm) on Si substrate irradiated by a single SASE pulse = 98 nm, W=100 TW/cm 2 Tesla Test Facility, Phase 1 / Ablation experiment Courtesy of J. Krzywinski Jean-Paul Carneiro, FNAL, 16-Sept DESY superconducting SASE FEL’s

Tesla Test Facility, Phase 1 / Résumé TTF phase 1 has been concluded successfully  Saturation observed in the wavelength of nm  Peak brilliance as expected  ~1.5 GW of peak power in flashes of fs  Good agreement between observations and simulation codes (ASTRA / ELEGANT / FAST) Jean-Paul Carneiro, FNAL, 16-Sept DESY superconducting SASE FEL’s

BC2BC3 ACC2 RF GUN ACC3ACC4ACC5ACC6 UNDULATOR ACC1 S.H. Tesla Test Facility, Phase 2 To FEL diagnostics Dump Jean-Paul Carneiro, FNAL, 16-Sept DESY superconducting SASE FEL’s TTF Phase 2 is an extension of TTF Phase 1 to shorter wavelengths as low as 6 nm. Total length of the accelerator : ~ 250 meters, Energy : 1 GeV.

Tesla Test Facility, Phase 2 / Longitudinal Phase Space upstream 3.9 GHz cavity downstream 3.9 GHz Jean-Paul Carneiro, FNAL, 16-Sept DESY superconducting SASE FEL’s

Tesla Test Facility, Phase 2 / Longitudinal Phase Space downstream BC2downstream BC3 Jean-Paul Carneiro, FNAL, 16-Sept DESY superconducting SASE FEL’s

Tesla Test Facility, Phase 2 / Longitudinal Phase Space Jean-Paul Carneiro, FNAL, 16-Sept DESY superconducting SASE FEL’s

Tesla Test Facility, Phase 2 / Slice emittance Jean-Paul Carneiro, FNAL, 16-Sept DESY superconducting SASE FEL’s

BC2BC3 ACC2 RF GUN ACC3ACC4ACC5ACC6 UNDULATOR ACC1 S.H. Tesla Test Facility, Phase 2 To FEL diagnostics Dump Photons Radiation wavelength : 6 nm FWHM radiation pulse duration : ~ 200 fs Radiation peak power level : ~ 2.8 GW Jean-Paul Carneiro, FNAL, 16-Sept DESY superconducting SASE FEL’s Reference : (TTF2 Optimized Version, P. Piot et Al. )

BC2BC3 ACC2 RF GUN ACC3ACC4ACC5 UNDULATOR ACC1 To FEL diagnostics Dump Tesla Test Facility, Phase 2 / Present Status Jean-Paul Carneiro, FNAL, 16-Sept DESY superconducting SASE FEL’s 3.9 GHz cavity and ACC6 not installed (2006). Injector Conditioning from Jan to June 2004 (dump downstream ACC2). Shutdown from June 2004 to Aug Re-commissioning since Sept (dump downstream ACC5 for dark current studies). Cryostat : cooled at 2 K from April to June. RF : Modulator 3 and 2 (Gun, ACC1) OK, Mod. 5 and 4 (ACC2/3, ACC4/5/6) OK soon. Vacuum : > 100 ion pumps, > 50 TSP, OK. Diagnostics: Cameras OK, Toroids OK, BPM installed (electronics available end 2004).

Tesla Test Facility, Phase 2 / Status RF Gun & ACC1TTF2 RF GUN Jean-Paul Carneiro, FNAL, 16-Sept DESY superconducting SASE FEL’s

Tesla Test Facility, Phase 2 / Status 3.9 GHz cavity section and BC2 FODO lattice & ACC2 Jean-Paul Carneiro, FNAL, 16-Sept DESY superconducting SASE FEL’s

Tesla Test Facility, Phase 2 / Status End ACC3 & BC3 ACC4 & ACC5 Jean-Paul Carneiro, FNAL, 16-Sept DESY superconducting SASE FEL’s

Tesla Test Facility, Phase 2 / Status End ACC5 LOLA cavity Jean-Paul Carneiro, FNAL, 16-Sept DESY superconducting SASE FEL’s

Tesla Test Facility, Phase 2 / Status collimator section main & bypass beamline Jean-Paul Carneiro, FNAL, 16-Sept DESY superconducting SASE FEL’s

Tesla Test Facility, Phase 2 / Status undulator beam dump Jean-Paul Carneiro, FNAL, 16-Sept DESY superconducting SASE FEL’s

ACC2ACC1 ACC3 ACC4ACC5 TTF, Phase 2 / Modules Operating Gradients Jean-Paul Carneiro, FNAL, 16-Sept DESY superconducting SASE FEL’s Courtesy of D. Kostin

EP cavity Jean-Paul Carneiro, FNAL, 16-Sept DESY superconducting SASE FEL’s Tesla Test Facility, Phase 2 / ACC1 Operation Courtesy of D. Kostin

Laser pulse  Short Longitudinal Pulse : Gaussian :  Transverse neither gaussian nor flat : Time (ps) Tesla Test Facility, Phase 2 / Laser Jean-Paul Carneiro, FNAL, 16-Sept DESY superconducting SASE FEL’s Courtesy of S. Schreiber

Tesla Test Facility, Phase 2 / Energy Gun Vs Forward Power Jean-Paul Carneiro, FNAL, 16-Sept DESY superconducting SASE FEL’s

Tesla Test Facility, Phase 2 / Energy Gun Vs Launch Phase Jean-Paul Carneiro, FNAL, 16-Sept DESY superconducting SASE FEL’s

Tesla Test Facility, Phase 2 / Energy Vs ACC1 Phase Jean-Paul Carneiro, FNAL, 16-Sept DESY superconducting SASE FEL’s

Tesla Test Facility, Phase 2 / Energy Spread Vs ACC1 Phase Jean-Paul Carneiro, FNAL, 16-Sept DESY superconducting SASE FEL’s

z = 19 m Magnetic length of quads 270 mm, one common power supply Design phase advance 45 deg Tesla Test Facility, Phase 2 / Emittance Jean-Paul Carneiro, FNAL, 16-Sept DESY superconducting SASE FEL’s

TTF, Phase 2 / Emittance Measurement Method Jean-Paul Carneiro, FNAL, 16-Sept DESY superconducting SASE FEL’s Beam sizes are measured at four screens with fixed quadrupole currents in a FODO lattice Emittance and Twiss parameters calculated from the measured beam sizes and beam size errors FODO cell with periodic beta function is not a requirement for the emittance measurement 4 OTR + wirescanner stations

TTF, Phase 2 / Matched Beam in FODO Jean-Paul Carneiro, FNAL, 16-Sept DESY superconducting SASE FEL’s 4DBC26DBC2 8DBC2 10DBC2 3 bunches, 1 nC Solenoids at 277 A 6.4 mm Courtesy of K. Honkavaara

Three different image analysis methods used to determine the beam sizes Since a systematic study of beam size errors is not finished yet, a conservative 10 % beam size error is assumed Normalized horizontal and vertical emittances vs. solenoid current. This data is still subject to further analysis, and thus preliminary! Simulation by Y. Kim zoomzoom TTF, Phase 2 / Matched Beam in FODO Jean-Paul Carneiro, FNAL, 16-Sept DESY superconducting SASE FEL’s Courtesy of K. Honkavaara

Jean-Paul Carneiro, FNAL, 16-Sept DESY superconducting SASE FEL’s Tesla Test Facility, Phase 2 / First Light Scenarios Nominal Operation linearized compression (less sensitive to CSR and Space Charge) “long” SASE pulse (200 fs FWHM) First Light Scenarios 3.9 GHz cavity not available 445 MeV, 30 nm “short SASE pulse (~50 fs FWHM) (1) E. Saldin, E. Schneidmiller, M. Yurkov, “Expected Properties of the Radiation from the VUV-FEL at DESY (Femtosecond Mode of Operation)”, Proc. FEL 2004, Trieste, Italy. (2) J.-P. Carneiro, B. Faatz, K. Floettmann, “Velocity Bunching at TTF2”, Proc. FEL 2004, Trieste, It. “TTF1 like operation” (1) Q=0.5 nC, laser ~4 ps RMS, BC2 & BC3 “Velocity Bunching” (2) Q=1.0 nC, laser ~4 ps RMS, No Chicanes

Tesla Test Facility, Phase 2 / Velocity Bunching Jean-Paul Carneiro, FNAL, 16-Sept DESY superconducting SASE FEL’s ASTRA SIMULATIONS RMS bunch length Vs Phase of First Cavity of ACC1

Case Q = 1 nC ELEGANT OUTPUT ENTRANCE UNDULATOR (Z=203 m) GENESIS OUTPUT (B. Faatz) Jean-Paul Carneiro, FNAL, 16-Sept DESY superconducting SASE FEL’s Tesla Test Facility, Phase 2 / Velocity Bunching

Pyro detector / No velocity buncingPyro detector / With velocity bunching Jean-Paul Carneiro, FNAL, 16-Sept DESY superconducting SASE FEL’s Tesla Test Facility, Phase 2 / Velocity Bunching

Energy Vs Phase First Cavity ACC1Energy Spread Vs Phase First Cavity ACC1 Jean-Paul Carneiro, FNAL, 16-Sept DESY superconducting SASE FEL’s Tesla Test Facility, Phase 2 / Velocity Bunching

Jean-Paul Carneiro, FNAL, 16-Sept DESY superconducting SASE FEL’s Quad Scan (Q3UBC2 / Screen 3SBC2 / L = ~ 2.7 meters / Q = 1 nC) Normalized Emittance from Quad Scan ~ 13 mm-mrad

Tesla Test Facility, Phase 2 / Résumé Jean-Paul Carneiro, FNAL, 16-Sept DESY superconducting SASE FEL’s First results from TTF phase 2 encouraging  Saturation at 30 nm foreseen for late 2004 / early 2005  Shortest wavelengths and long bunch train  Operation with 3.9 Ghz cavity and ACC6 in 2006

XFEL / Version ESFRI workshop (Oct. 2003) BC1 ACC2 RF GUN S. H.ACC5ACC57 UNDULATOR ACC1ACC3ACC4 BC2 Total length of the facility ~ 3.3 km (~ 2km tunnel), Energy : 20 GeV. Version presented at the “European Strategy Forum on Research Infrastructures” (ESFRI, Oct. 2003, DESY Hamburg) Jean-Paul Carneiro, FNAL, 16-Sept DESY superconducting SASE FEL’s

XFEL / Entrance undulator Current distribution Jean-Paul Carneiro, FNAL, 16-Sept DESY superconducting SASE FEL’s

XFEL / Entrance undulator slice emittance Jean-Paul Carneiro, FNAL, 16-Sept DESY superconducting SASE FEL’s

XFEL / FEL Radiation BC1 ACC2 RF GUN S. H.ACC5ACC57 UNDULATOR ACC1ACC3ACC4 BC2 Photons Radiation wavelength : 0.1 nm FWHM radiation pulse duration : 100 fs Radiation peak power level : 24 GW Jean-Paul Carneiro, FNAL, 16-Sept DESY superconducting SASE FEL’s Reference : (XFEL ESFRI Version, Y. Kim / T. Limberg )

TTF1, TTF2 and XFEL  TTF1 : Saturation at 98 nm in Sept good agreement with simulation codes = great success for the TESLA collaboration.  TTF2 : good results TTF1+ good results conditioning TTF2 = very promising for TTF2 operation (6 nm in 2006).  XFEL : good results TTF2 + good European cooperation = European XFEL in DESY Hamburg in ~ CONLUSION Major progress concerning a Superconducting Linear Collider :  35 MV/m measured in April 2004 at TTF2 with the 5 th cavity of ACC1 operating with and without beam. Jean-Paul Carneiro, FNAL, 16-Sept DESY superconducting SASE FEL’s

EXTRA SLIDES PITZ Coupling Slot Fermilab RF Gun G3 Superstructures Old XFEL version (workshop Aug. 2003, DESY Zeuthen) Jean-Paul Carneiro, FNAL, 16-Sept DESY superconducting SASE FEL’s

PITZ Photo-Injector (DESY Zeuthen) Faraday Cup DipoleQuadrupole triplet Civil construction started in 1999 and RF gun conditioning started in Oct First beam Jan 2002 RF gun delivered to DESY Hamburg in Nov RF GUN (with coaxial input coupler) 1.5 cells, π-mode, 1.3 GHz 40 MV/m, ~ 3 MW Main PITZ results Max energy : ~ 4.7 MeV Min energy spread : ~ 33 keV/c (1 nC) Min bunch length : 6.3±1.4 mm Min Normalized Emittance : 1.5 mm-mrad in X 1.9 mm-mrad in Y Operation without beam at 10 Hz, 900µs and 3 MW (~27 kW) LASER and CATHODE 263 nm Cs2Te photo-cathode Transverse emittance measurement slitsscreen SOLENOIDES Jean-Paul Carneiro, FNAL, 16-Sept DESY superconducting SASE FEL’s

PITZ Photo-Injector Jean-Paul Carneiro, FNAL, 16-Sept DESY superconducting SASE FEL’s

PITZ Photo-Injector / RF Gun during installation Jean-Paul Carneiro, FNAL, 16-Sept DESY superconducting SASE FEL’s

PITZ Photo-Injector / ANSYS (F. Marhauser, BESSY) 14 water channels (1 in the back plane going twice around, 4 around the half cell, 7 around the full cell, 1 in the front plane and 1 in the iris making three loops around it) Max. water flow rate per channel: with max. flow velocity and channel cross section Total Maximum water flow rate : with Jean-Paul Carneiro, FNAL, 16-Sept DESY superconducting SASE FEL’s

PITZ Photo-Injector / Water Cooling System Jean-Paul Carneiro, FNAL, 16-Sept DESY superconducting SASE FEL’s

PITZ Photo-Injector / RF Gun operation at 10 Hz Temperature Vs RF pulse length Temperature Vs mean power Jean-Paul Carneiro, FNAL, 16-Sept DESY superconducting SASE FEL’s

DETUNING OF THE PITZ GUN WITH LONG RF PULSES Reflected power Jean-Paul Carneiro, FNAL, 16-Sept DESY superconducting SASE FEL’s

PITZ Photo-injector / ANSYS simulations at 27 kW We operated at PITZ the TTF2 RF gun at 10 Hz, 900 µs, 3.0 MW. Stable operation could be reached for few minutes before vacuum interlocks. More conditioning is still needed at this mean power. (Temp probe 1 cm in the iris hole) Jean-Paul Carneiro, FNAL, 16-Sept DESY superconducting SASE FEL’s

PITZ Photo-injector / ANSYS simulations at 130 kW At 50 Hz operation, ANSYS predicts temperatures in the waveguide iris of ~170 C and stresses of ~130 MPa which are not tolerable  The operation at 50 Hz would necessitate adding more cooling channels. Jean-Paul Carneiro, FNAL, 16-Sept DESY superconducting SASE FEL’s

PITZ Photo-Injector / Longitudinal Momentum Mean momentum vs RF phase  0, deg RMS momentum spread vs RF phase  0, deg 4.72 MeV/c 33 keV/c Courtesy of D. Lipka Jean-Paul Carneiro, FNAL, 16-Sept DESY superconducting SASE FEL’s

PITZ Photo-Injector / Longitudinal Profile Courtesy of F. Stephan Cherenkov radiation use of aerogel: SiO2, refractive index ≈ 1.03 Bunch length (mm) in RMS 90 %:  0, deg Minimum bunch length: FWHM = (21.04 ± 0.45stat ± 4.14syst) ps = (6.31 ± 0.14stat ± 1.24syst) mm Jean-Paul Carneiro, FNAL, 16-Sept DESY superconducting SASE FEL’s

PITZ Photo-Injector / Emittance Vs Bucking Courtesy of F. Stephan WR=1.2 (Spring 8, 14 MeV) Jean-Paul Carneiro, FNAL, 16-Sept DESY superconducting SASE FEL’s

 PITZ upgrade: (2004: 16 MeV, 2005: 40 MeV) Gun Booster PITZ Photo-injector / Résumé  RF gun conditioned and delivered to TTF2.  Conditioning of new RF gun started in Jan  Next steps : reach ~ 1.5 mm-mrad using homogenous laser profile at 40 MV/m. reach ~ 1.2 mm-mrad using 2 ps rise/fall time (for TTF2) reach ~ 0.9 mm-mrad (for XFEL) using 60 MV/m (10 MW klystron) 64

Coupling slot Fermilab RF Gun G3 Jean-Paul Carneiro, FNAL, 16-Sept DESY superconducting SASE FEL’s Injector commissioning (including FODO lattice) from Jan. to June 2004 Shutdown from June to August 2004 (vacuum work, etc…) Injector re-commissioning started in Sept. 2004

SUPERSTRUCTURES From J. Sekutowicz et Al., PRST-AB, Vol. 7, (2004) Superstuctures : now : 2×7 Nb cells connected by λ/2 long tubes later : 2×9 cells Advantages (compared to classical 9 cell TESLA cavity) : $ reduce the number of fundamental power couplers  space saving in the TESLA tunnel (up to 1.8 km) Results of 2 superstructures 2×7 tested in TTF1 :  field flatness < 2%, good HOM damping  bunch-to-bunch energy variation :  encouraging results (TESLA SPECIFICATION) Jean-Paul Carneiro, FNAL, 16-Sept DESY superconducting SASE FEL’s

XFEL / Old Version (Aug. 2003) BC1BC2 ACC2ACC3ACC4ACC1 S.H. ACC7 UNDULATOR BC3 ACC8ACC57 RF GUN Version presented at the workshop “Start-to-End Simulations of X-RAY FELs” (Aug. 2003, DESY Zeuthen) Idea : extension of TTF2 at 20 GeV with 3 rd bunch compressor. Jean-Paul Carneiro, FNAL, 16-Sept DESY superconducting SASE FEL’s