Nucleation of Vortices in Superconductors in Confined Geometries W.M. Wu, M.B. Sobnack and F.V. Kusmartsev Department of Physics Loughborough University,

Slides:



Advertisements
Similar presentations
Nernst-Ettingshausen effect in graphene Andrei Varlamov INFM-CNR, Tor Vergata, Italy Igor Lukyanchuk Universite Jules Vernes, France Alexey Kavokin University.
Advertisements

Superconductors. Gor’kov and Eliashberg found the time- dependent G-L equations using microscopic theory: These equations are solved numerically Model.
Observation of a possible Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state in CeCoIn 5 Roman Movshovich Andrea Bianchi Los Alamos National Laboratory, MST-10.
Two Major Open Physics Issues in RF Superconductivity H. Padamsee & J
Rotations and quantized vortices in Bose superfluids
Quantum Phenomena at Low Temperatures, Lammi, 10 January 2004 Continuous topological defects in 3 He-A in a slab Models for the critical velocity and pinning.
Collinear interaction of photons with orbital angular momentum Apurv Chaitanya N Photonics science Laboratory, PRL.
1 Eniko Madarassy Reconnections and Turbulence in atomic BEC with C. F. Barenghi Durham University, 2006.
1 1. GL equations in a rotationally invariant situation Straight vortex line has symmetries z-translations + xy rotations. A clever choice of gauge should.
Probing Superconductors using Point Contact Andreev Reflection Pratap Raychaudhuri Tata Institute of Fundamental Research Mumbai Collaborators: Gap anisotropy.
1 Enikö Madarassy Vortex motion in trapped Bose-Einstein condensate Durham University, March, 2007.
Electrokinetics of correlated electrolytes and ionic liquids Martin Z. Bazant Departments of Chemical Engineering and Mathematics Massachusetts Institute.
High-T c Superconductor Surface State 15/20/2015 Group member: 陈玉琴、郭亚光、贾晓萌、刘俊义、刘晓雪 彭星星、王建力、王鹏捷 ★ 、喻佳兵 ★ :Group Leader & Speaker.
Interpretation of the Raman spectra of graphene and carbon nanotubes: the effects of Kohn anomalies and non-adiabatic effects S. Piscanec Cambridge University.
Small-Angle Neutron Scattering & The Superconducting Vortex Lattice
Computer Simulations, Scaling and the Prediction of Nucleation Rates Barbara Hale Physics Department and Cloud and Aerosol Sciences Laboratory University.
Computer Simulations, Nucleation Rate Predictions and Scaling Barbara Hale Physics Department and Cloud and Aerosol Sciences Laboratory, University of.
ECRYS 2011 Confinement-Induced Vortex Phases in Superconductors Institut des Nanosciences de Paris INSP, CNRS, Université Pierre et Marie Curie Paris 6,
Critical fields, vortex melting and the irreversibility line in quasi 2D organic superconductors Braunen E. Smith K. Cho, I. Mihut and C. C. Agosta Department.
V Ring of charge that generates EM field around it [2] z r Dipole case: - charge modulated by cos  - dipole moment P = Qa Q To compute the wake function,
VORTEX MATTER IN SUPERCONDUCTORS WITH FERROMAGNETIC DOT ARRAYS Margriet J. Van Bael Martin Lange, Victor V. Moshchalkov Laboratorium voor Vaste-Stoffysica.
Bose-Einstein Condensate Fundaments, Excitation and Turbulence Vanderlei Salvador Bagnato Instituto de Física de São Carlos – Universidade de São Paulo.
Development of Synthetic Air Jet Technology for Applications in Electronics Cooling Dr. Tadhg S. O’Donovan School of Engineering and Physical Sciences.
Condensed Matter Physics Big Facility Physics26th Jan 2004 Sub Heading “Big Facility” Physics in Grenoble ESRF: X-rays ILL: neutrons.
XII International School-seminar “The Actual Problems of Microworld Physics” July 22 – August 2, 2013, Gomel, Belarus Vacuum polarization effects in the.
1 Superconductivity  pure metal metal with impurities 0.1 K Electrical resistance  is a material constant (isotopic shift of the critical temperature)
I. Grigorieva, L. Vinnikov, A. Geim (Manchester) V. Oboznov, S. Dubonos (Chernogolovka)
Dynamics of phase transitions in ion traps A. Retzker, A. Del Campo, M. Plenio, G. Morigi and G. De Chiara Quantum Engineering of States and Devices: Theory.
2-D FEM MODELING OF MICROWAVE HEATING OF COAL PARTICLES EGEE 520 SEMESTER PRESENTATION by Ojogbane M. Achimugu May 3 rd 2007.
Lecture 3. Granular superconductors and Josephson Junction arrays Plan of the Lecture 1). Superconductivity in a single grain 2) Granular superconductors:
Superconducting vortex avalanches D. Shantsev Åge A. F. Olsen, D. Denisov, V. Yurchenko, Y. M. Galperin, T. H. Johansen AMCS (COMPLEX) group Department.
Hadron to Quark Phase Transition in the Global Color Symmetry Model of QCD Yu-xin Liu Department of Physics, Peking University Collaborators: Guo H., Gao.
Michael Browne 11/26/2007.
PLASMA Artificial classical atoms and molecules: from electrons to colloids and to superconducting vortices François Peeters V. Bedanov, V. Schweigert,
Numerical simulations of thermal counterflow in the presence of solid boundaries Andrew Baggaley Jason Laurie Weizmann Institute Sylvain Laizet Imperial.
L.Ya. Vinnikov   L.A, Emelchenko ISSP RAS, Chernogolovka, RUSSIA
Saffman-Taylor streamer discharges
Dendritic Thermo-magnetic Instability in Superconductors Daniel V. Shantsev AMCS group, Department of Physics, UiO Collaboration: D. V. Denisov, A.A.F.Olsen,
RF breakdown in multilayer coatings: a possibility to break the Nb monopoly Alex Gurevich National High Magnetic Field Laboratory, Florida State University.
Vortex avalanches in superconductors: Size distribution and Mechanism Daniel Shantsev Tom Johansen andYuri Galperin AMCS group Department of Physics, University.
Critical state controlled by microscopic flux jumps in superconductors
Molecular dynamics study of the lifetime of nanobubbles on the substrate Division of Physics and Astronomy, Graduate School of Science, Kyoto University.
Physics Department, Technion, Israel Meni Shay, Ort Braude College, Israel and Physics Department, Technion, Israel Phys. Rev. B.
Vortex Solution in Holographic Two-Band Superconductor
Markus Quandt Quark Confinement and the Hadron Spectrum St. Petersburg September 9,2014 M. Quandt (Uni Tübingen) A Covariant Variation Principle Confinement.
Vortex Lattice Anisotropy in Magnesium Diboride Morten Ring Eskildsen Department of Physics University of Notre Dame.
Left-handed Nuclei S. Frauendorf Department of Physics University of Notre Dame, USA IKH, Forschungszentrum Rossendorf Dresden, Germany.
K.M.Shahabasyan, M. K. Shahabasyan,D.M.Sedrakyan
1 Peter de Vries – ITPA T meeting Culham – March 2010 P.C. de Vries 1,2, T.W. Versloot 1, A. Salmi 3, M-D. Hua 4, D.H. Howell 2, C. Giroud 2, V. Parail.
Global and local flux jumps in MgB2 films: Magneto-optical imaging and theory Daniel Shantsev, Yuri Galperin, Alexaner Bobyl, Tom Johansen Physics Department,
1 Non-uniform superconductivity in superconductor/ferromagnet nanostructures A. Buzdin Institut Universitaire de France, Paris and Condensed Matter Theory.
Why Make Holes in Superconductors? Saturday Morning Physics December 6, 2003 Dr. Sa-Lin Cheng Bernstein.
Pinning Effect on Niobium Superconducting Thin Films with Artificial Pinning Centers. Lance Horng, J. C. Wu, B. H. Lin, P. C. Kang, J. C. Wang, and C.
Grid computing simulation of superconducting vortex lattice in superconducting magnetic nanostructures M. Rodríguez-Pascual 1, D. Pérez de Lara 2, E.M.
Vortex hotspots in SRF cavities Alex Gurevich ODU Department of Physics, Center for Accelerator Science 7-th SRF Materials Workshop, JLab, July 16, 2012.
DIRECT OBSERVATION OF JOSEPHSON VORTICES
Observation of Vortices in Superfluid He Droplets 67 th International Symposium on Molecular Spectroscopy Luis F. Gomez 1, Evgeny Loginov 2, and Andrey.
Folgefonna Glacier, Norway. Finger patterns produced by flux jumps in superconductors Finger patterns produced by flux jumps in superconductors Daniel.
RF Nonlinearity in Thin-Film and Bulk Superconductors: A Mechanism for Cavity Q-Drop Behnood G. Ghamsari, Tamin Tai, Steven M. Anlage Center for Nanophysics.
Ultimate gradient limitation in Nb SRF cavities: the bi-layer model and prospects for high Q at high gradient Mattia Checchin TTC Meeting, CEA Saclay,
G. R. Berdiyorov and F. M. Peeters University of Antwerp, Belgium
Electrical resistance
Coherent flows in confined 3D active isotropic fluids
Conductance of nanosystems with interaction
Efrain J. Ferrer Paramagnetism in Compact Stars
Special Topics in Electrodynamics:
Special Topics in Electrodynamics:
Special Topics in Electrodynamics:
Ginzburg-Landau theory
Presentation transcript:

Nucleation of Vortices in Superconductors in Confined Geometries W.M. Wu, M.B. Sobnack and F.V. Kusmartsev Department of Physics Loughborough University, U.K. July 2007

 Nucleation of vortices and anti-vortices 1.Characteristics of system 2.Nucleation of vortices 3.Physical boundary conditions 4.Characteristics of vortex interaction

 Geim: paramagnetic Meissner effect  Chibotaru and Mel’nikov: anti-vortices, multi- quanta-vortices  Schweigert: multi-vortex state  giant vortex  Okayasu: no giant vortex A.K. Geim et al., Nature (London) 408,784 (2000). L.F. Chibotaru et al., Nature (London) 408,833 (2000). A.S. Mel’nikov et al., Phys. Rev. B 65, (2002). V.A. Schweigert et al., Phys. Rev. Lett. 81, 2783 (1998). S. Okayasu et al., IEEE 15 (2), 696 (2005).

Total flux = LΦ 0 Grigorieva et al., Phys. Rev. Lett. 96, (2006) Applied H Baelus et al.: predictions different from observations [Phys. Rev. B 69, (2004)]

 Theories at T = 0K  Experiments at finite T ≠ 0K This study: extension of previous work to include multi-rings and finite temperatures

Model H = Hk =  A app d R < λ 2 /d = Λ, d << r c H~H c1 R Local field B ~ H

T = 0K H < H c1 : Meissner effect H > H c1 : Vortices penetrate Flux Φ v = qΦ 0, Φ 0 = hc/2e HH j s = -(c/4  2 )A j s = -(c/4  2 )(A-A v ) jsjs jsjs

Method of images riri r’ i = (R 2 /r)r i Boundary condition: normal component of j s vanishes image anti-vortex Φ i = qΦ 0 Φ i (r)= qΦ 0 /2  r A v =  [Φ i (r-r i ) - Φ i (r-r' i )]θ ΦiΦi -Φi-Φi

H r1r1 r2r2 L > 0 vortex L < 0 anti-vortex r 1 < r 2 LΦ0LΦ0 N 1 vortices qΦ 0 N 2 vortices qΦ 0

T = 0 K Gibbs free Energy z i = r i /R

α

Finite temperature T ≠ 0K Gibbs free energyS=Entropy Dimensionless Gibbs free energy:

 Minimise g(L,N 1,N 2,t) with respect to z 1, z 2  Grigorieva: Nb R ~ 1.5nm, 0 ~ 100nm T c ~ 9.1K, t c ~ 0.7 T ~ 1.8K, t ~ 0.14 (L, N 1 ): a central vortex of flux LΦ 0 at centre, N 1 vortices (Φ 0 ) on ring z 1 (L,N 1,N 2 ): a central vortex, N 1 vortices on z 1 and N 2 on z 2

Results: t = 0 (T = 0K)

Results: t = 0.14 (T = 1.8K) H=60 Oe  h=20.5

Vortex Configurations with 9  0 – (0,2,7) * * (1,8)

Total flux = 9  0 (L,N 1,N 2 )=(0,2,7) at t = 0.14 (L,N)=(1,8) at t = 0

Vortex Configurations with 10  0 – (1,9) * * (0,2,8) - - (0,3,7) H = 60 Oe  h = 20.5

Total flux = 10  0 (L,N 1,N 2 )=(0,3,7) t = 0.14 (L,N 1,N 2 )=(0,2,8) t = 0.14 (L,N)=(1,9) t = 0

Conclusions and Remarks  Modified theory to include temperature  Results at t = 0.14 in very good agreement with experiments of Grigorieva + her group  Extension to > 2 rings/shells  Underlying physics mechanisms