A new theoretical insight into the spectroscopic properties of polonium and astatine atoms Pascal Quinet Spectroscopie Atomique et Physique des Atomes.

Slides:



Advertisements
Similar presentations
1/15/2015 Report YY EUV Spectroscopy of Tungsten Observed in SH-Htsc EBIT and related Calculations Yang Yang Shanghai EBIT Laboratory Institute of Modern.
Advertisements

FOURIER TRANSFORM EMISSION SPECTROSCOPY AND AB INITIO CALCULATIONS ON WO R. S. Ram, Department of Chemistry, University of Arizona J. Liévin, Université.
High Resolution Laser Induced Fluorescence Spectroscopic Study of RuF Timothy C. Steimle, Wilton L. Virgo Tongmei Ma The 60 th International Symposium.
Electron wavefunction in strong and ultra-strong laser field One- and two-dimensional ab initio simulations and models Jacek Matulewski Division of Collision.
Accurate wavelenghts for X-ray spectroscopy and the NIST Hydrogen and Hydrogen-Like ion databases Svetlana Kotochigova Nancy Brickhouse, Kate Kirby, Peter.
Quantum Mechanics and Force Fields Hartree-Fock revisited Semi-Empirical Methods Basis sets Post Hartree-Fock Methods Atomic Charges and Multipoles QM.
Molecular Modeling: Semi-Empirical Methods C372 Introduction to Cheminformatics II Kelsey Forsythe.
THE PROGRAM COMPLEX FOR COMPUTATION OF SPECTROSCOPIC CHARACTERISTICS OF ATOMIC AND MOLECULAR GASES IN UV, VISIBLE AND IR SPECTRAL RANGE FOR A WIDE RANGE.
Introduction to ab initio methods I Kirill Gokhberg.
Photoelectron Spectroscopy Lecture 3: vibrational/rotational structure –Vibrational selection rules –Franck-Condon Effect –Information on bonding –Ionization.
D.L. KOKKIN, N.J. REILLY, J.A. JOESTER, M. NAKAJIMA, K. NAUTA, S.H. KABLE and T.W. SCHMIDT Direct Observation of the c State of C 2 School of Chemistry,
Case Studies Class 5. Computational Chemistry Structure of molecules and their reactivities Two major areas –molecular mechanics –electronic structure.
The spectral method: time-dependent quantum dynamics of FHF - : Potential Energy Surface, Vibrational Eigenfunctions and Infrared Spectrum. Guillermo Pérez.
Chapter 11 Modern Atomic Theory. Copyright © Houghton Mifflin Company. All rights reserved. 11 | 2 Rutherford’s Atom The concept of a nuclear atom (charged.
Rydberg physics with cold strontium James Millen Durham University – Atomic & Molecular Physics group.
Theoretical work on the water monomer and dimer Matt Barber Jonathan Tennyson University College London September 2009.
MQDT analysis James Millen. Introduction MQDT analysis – Group meeting 13/09/10 In our experiment we measure the population of Rydberg states using autoionization.
The story unfolds… James Millen The story unfolds… – Group meeting 12/04/10.
Polarizabilities, Atomic Clocks, and Magic Wavelengths DAMOP 2008 focus session: Atomic polarization and dispersion May 29, 2008 Marianna Safronova Bindiya.
1 National Cheng Kung University, Tainan, Taiwan First Experimental Observation of the Doubly-Excited 2 1  g State of Na 2 Chin-Chun Tsai, Hui-Wen Wu,
Photoionization Modeling: the K Lines and Edges of Iron P. Palmeri (UMH-Belgium) T. Kallman (GSFC/NASA-USA) C. Mendoza & M. Bautista (IVIC-Venezuela) J.
Excited state spatial distributions Graham Lochead 20/06/11.
Trapped Radioactive Isotopes:  icro-laboratories for fundamental Physics EDM in ground state (I=1/2) H = -(d E + μ B) · I/I m I = 1/2 m I = -1/2 2ω12ω1.
An Introduction to Molecular Orbital Theory. Levels of Calculation Classical (Molecular) Mechanics quick, simple; accuracy depends on parameterization;
Calculation of Molecular Structures and Properties Molecular structures and molecular properties by quantum chemical methods Dr. Vasile Chiş Biomedical.
Spectral Line Physics Atomic Structure and Energy Levels Atomic Transition Rates Molecular Structure and Transitions 1.
Chapter 5 Alkali atoms Properties of elements in periodic table The Alkali metals.
Anh T. Le and Timothy C. Steimle* The molecular frame electric dipole moment and hyperfine interaction in hafnium fluoride, HfF. Department of Chemistry.
HYDROGEN ATOM AND SPECTROSCOPY.. Energy Levels for the Hydrogen atom.
Collinear laser spectroscopy of 42g,mSc
PHY206: Atomic Spectra  Lecturer: Dr Stathes Paganis  Office: D29, Hicks Building  Phone: 
1 INSTITUTE of SOLID STATE PHYSICS Founded Laboratories and Theoretical Department Staff - 180, Scientific staff In the field of atomic and.
Effects of self-consistence violations in HF based RPA calculations for giant resonances Shalom Shlomo Texas A&M University.
N. Yugami, Utsunomiya University, Japan Generation of Short Electromagnetic Wave via Laser Plasma Interaction Experiments US-Japan Workshop on Heavy Ion.
Anisotropic dielectronic resonances from magnetic-dipole lines Yuri Ralchenko National Institute of Standards and Technology Gaithersburg, MD, USA ADAS.
Electronic Spectroscopy of Palladium Dimer (Pd 2 ) 68th OSU International Symposium on Molecular Spectroscopy Yue Qian, Y. W. Ng and A. S-C. Cheung Department.
Electronic Transitions of Palladium Monoboride and Platinum Monoboride Y.W. Ng, H.F. Pang, Y. S. Wong, Yue Qian, and A. S-C. Cheung Department of Chemistry.
60th International Symposium on Molecular Spectroscopy Discovery: GaAs:Er system, 1983 The coincidence of the transition wavelength with the absorption.
Rotational spectroscopy of two telluric compounds : vinyl- and ethyl-tellurols R.A. MOTIYENKO, L. MARGULES, M. GOUBET Laboratoire PhLAM, CNRS UMR 8523,
Femtosecond Laser Spectroscopy of C 60 Nieuwegein, The Netherlands August 21, 2001 Eleanor Campbell, Göteborg University & Chalmers, Sweden R.D. Levine,
W I S S E N T E C H N I K L E I D E N S C H A F T  Januar 13 Name und OE, Eingabe über > Kopf- und Fußzeile.
Quantum Chemistry: Our Agenda (along with Engel)
Physics “Advanced Electronic Structure” Lecture 1. Theoretical Background Contents: 1. Historical Overview. 2. Basic Equations for Interacting Electrons.
THE ANALYSIS OF HIGH RESOLUTION SPECTRA OF ASYMMETRICALLY DEUTERATED METHOXY RADICALS CH 2 DO AND CHD 2 O (RI09) MING-WEI CHEN 1, JINJUN LIU 2, DMITRY.
A NEW 2 Σ Σ + TRANSITION OF PtF BY INTRACAVITY LASER ABSORPTION SPECTROSCOPY LEAH C O'BRIEN, TAYLOR DAHMS, KAITLIN A WOMACK Department of Chemistry,
Rutherford’s Model: Conclusion Massive nucleus of diameter m and combined proton mass equal to half of the nuclear mass Planetary model: Electrons.
Chemistry 700 Lectures. Resources Grant and Richards, Foresman and Frisch, Exploring Chemistry with Electronic Structure Methods (Gaussian Inc., 1996)
Electric field which acts on core C due to the valence electrons and the other cores. Where is a cutoff function for the electric field inside the core.
Last hour: Electron Spin Triplet electrons “avoid each other”, the WF of the system goes to zero if the two electrons approach each other. Consequence:
Rydberg States of Two Valence Electron Atoms W. E Cooke K.A. Safinya W. Sandner F. Gounand P. Pillet N. H. Tran R. Kachru R. R. Jones.
Optical Stark Spectroscopy and Hyperfine study of Gold Chrolride (AuCl) Ruohan Zhang and Timothy C. Steimle International Symposium on Molecular Spectroscopy.
Spatial distributions in a cold strontium Rydberg gas Graham Lochead.
First-Principles calculations of the structural and electronic properties of the high-K dielectric HfO 2 Kazuhito Nishitani 1,2, Patrick Rinke 2, Abdallah.
Chapter 33 Early Quantum Theory and Models of Atom.
High-resolution Fourier transform emission spectroscopy of the A 2  + – X 2  transition of the BrCN + ion. June 20, 2005, Ohio state Univ. Yoshihiro.
Rydberg Series of C 60 Osnabrück, Germany March 2002 Eleanor Campbell, Göteborg University & Chalmers, Sweden R.D. Levine, Fritz Haber Center, Hebrew University.
The gerade Rydberg states of molecular hydrogen Daniel Sprecher, 1 Christian Jungen, 2 and Frédéric Merkt 1 1 Laboratory of Physical Chemistry, ETH Zurich,
Microwave Spectroscopy of the Autoionizing 5d 3/2 n l States of Barium Edward Shuman Tom Gallagher.
Multi-step and Multi-photon Excitation Studies of Group-IIB Elements
LASER INDUCED FLUORESCENCE SPECTROSCOPY OF THE SiNSi RADICAL II: IDENTIFICATIONS OF THE A2A1, B2B1, AND D2Sg+ STATES C. MOTOYOSHI, Y. SUMIYOSHI, Y. ENDO.
QUANTUM TRANSITIONS WITHIN THE FUNCTIONAL INTEGRATION REAL FUNCTIONAL
Professor : Ourida OUAMERALI
Introduction to Tight-Binding
It should be no surprise that the Schrödinger result exactly matches the Bohr result. Recall that Bohr was able to explain the spectrum of the H atom,
Optical Stark Spectroscopy and Hyperfine study of Gold Sulfide (AuS)
High Performance Computing in materials science from the semiempirical approaches to the many-body calculations Fabio Trani Laboratoire de Physique de.
3-Dimensional Intermolecular Potential Energy Surface of Ar-SH(2Pi)
Laser spectroscopy and ab initio calculations on TaF
Threshold Ionization and Spin-Orbit Coupling of CeO
HIGH RESOLUTION LASER SPECTROSCOPY OF NICKEL MONOBORIDE, NiB
Presentation transcript:

A new theoretical insight into the spectroscopic properties of polonium and astatine atoms Pascal Quinet Spectroscopie Atomique et Physique des Atomes Froids, Université de Liège & Astrophysique et Spectroscopie, Université de Mons

Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Plan of the talk  Some properties of polonium and astatine atoms  Experimental spectrum and energy levels of polonium  Experimental spectrum and energy levels of astatine  Theoretical approach  Atomic structure calculations in polonium  Atomic structure calculations in astatine  Summary and conclusions

Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Some properties of polonium and astatine atoms Polonium (Po) Astatine (At) Atomic number :84 Ground electronic configuration :[Xe]4f 14 5d 10 6s 2 6p 4 Excited electronic configurations :[Xe]4f 14 5d 10 6s 2 6p 3 nl (nl = 6d, 7s, 7p, 7d, …) Known isotopes :42 (A = 186 – 227) Longest half-life :103 years ( 209 Po) Atomic number :85 Ground electronic configuration :[Xe]4f 14 5d 10 6s 2 6p 5 Excited electronic configurations :[Xe]4f 14 5d 10 6s 2 6p 4 nl (nl = 6d, 7s, 7p, 7d, …) Known isotopes :32 (A = 191, 193 – 223) Longest half-life :8.1 hours ( 210 At)

Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Experimental spectrum and energy levels of polonium Config.TermJE (cm -1 )Config.TermJE (cm -1 ) 6p 43P3P20.00[odd] ?° ? p 43P3P p 3 ( 4 S)8s 5 S° ? p 43P3P [odd] ?° ?2 ? p 41D1D p 3 ( 4 S)8s 2 S° ?1 ? p 3 ( 4 S)7s 5 S° p 3 ( 2 D)7S 3 D° ?1 ? p 3 ( 4 S)7s 3 S° p 3 ( 4 S)8p 5 P ? p 41S1S p 3 ( 4 S)8p?1 or p 3 ( 4 S)7p 5 P ?3 ? p 3 ( 4 S)7d° ?2 ? p 3 ( 4 S)7p?? p 3 ( 4 S)8p?1 or p 3 ( 4 S)7p?1 or [odd] ?° ?1 or p 3 ( 4 S)6d 5 D° ? p 3 ( 4 S)9p 5 P ?3 ? p 3 ( 4 S)6d 5 D° ? p 3 ( 4 S)9p?1 or p 3 ( 4 S)6d° ? p 3 ( 4 S)9p ??1 or p 3 ( 4 S)6d° ? p 3 ( 4 S)8d° ?1 or [odd] ?° ? p 3 ( 4 S)8d° ?1 or [odd] ?° ? p 3 ( 4 S)10p ??1 or G.W. Charles, J.O.S.A. 56, 1292 (1966)  97 spectral lines in the region – nm [NIST Atomic Spectra Database (

Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Experimental spectrum and energy levels of polonium Config.TermJE (cm -1 )Config.TermJE (cm -1 ) 6p 43P3P20.00[odd] ?° ? p 43P3P p 3 ( 4 S)8s 5 S° ? p 43P3P [odd] ?° ?2 ? p 41D1D p 3 ( 4 S)8s 2 S° ?1 ? p 3 ( 4 S)7s 5 S° p 3 ( 2 D)7S 3 D° ?1 ? p 3 ( 4 S)7s 3 S° p 3 ( 4 S)8p 5 P ? p 41S1S p 3 ( 4 S)8p?1 or p 3 ( 4 S)7p 5 P ?3 ? p 3 ( 4 S)7d° ?2 ? p 3 ( 4 S)7p?? p 3 ( 4 S)8p?1 or p 3 ( 4 S)7p?1 or [odd] ?° ?1 or p 3 ( 4 S)6d 5 D° ? p 3 ( 4 S)9p 5 P ?3 ? p 3 ( 4 S)6d 5 D° ? p 3 ( 4 S)9p?1 or p 3 ( 4 S)6d° ? p 3 ( 4 S)9p ??1 or p 3 ( 4 S)6d° ? p 3 ( 4 S)8d° ?1 or [odd] ?° ? p 3 ( 4 S)8d° ?1 or [odd] ?° ? p 3 ( 4 S)10p ??1 or G.W. Charles, J.O.S.A. 56, 1292 (1966)  97 spectral lines in the region – nm [NIST Atomic Spectra Database (

Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Experimental spectrum and energy levels of polonium Config.TermJE (cm -1 )Config.TermJE (cm -1 ) 6p 43P3P20.00[odd] ?° ? p 43P3P p 3 ( 4 S)8s 5 S° ? p 43P3P [odd] ?° ?2 ? p 41D1D p 3 ( 4 S)8s 2 S° ?1 ? p 3 ( 4 S)7s 5 S° p 3 ( 2 D)7S 3 D° ?1 ? p 3 ( 4 S)7s 3 S° p 3 ( 4 S)8p 5 P ? p 41S1S p 3 ( 4 S)8p?1 or p 3 ( 4 S)7p 5 P ?3 ? p 3 ( 4 S)7d° ?2 ? p 3 ( 4 S)7p?? p 3 ( 4 S)8p?1 or p 3 ( 4 S)7p?1 or [odd] ?° ?1 or p 3 ( 4 S)6d 5 D° ? p 3 ( 4 S)9p 5 P ?3 ? p 3 ( 4 S)6d 5 D° ? p 3 ( 4 S)9p?1 or p 3 ( 4 S)6d° ? p 3 ( 4 S)9p ??1 or p 3 ( 4 S)6d° ? p 3 ( 4 S)8d° ?1 or [odd] ?° ? p 3 ( 4 S)8d° ?1 or [odd] ?° ? p 3 ( 4 S)10p ??1 or G.W. Charles, J.O.S.A. 56, 1292 (1966)  97 spectral lines in the region – nm [NIST Atomic Spectra Database (

Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Experimental spectrum and energy levels of astatine Config.TermJE (cm -1 ) 6p 52 P°3/20.0 6p 4 ( 3 P)7s 4P4P5/ p 4 ( 3 P)7s 4P4P3/ R. McLaughlin, J.O.S.A. 54, 965 (1964)  2 spectral lines at and nm [NIST Atomic Spectra Database (

Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Theoretical approach Pseudo-relativistic Hartree-Fock (HFR) method (R.D. Cowan, The Theory of Atomic Structure and Spectra, Univ. California Press, Berkeley, 1981) Based on the Schrödinger equation (atom with N electrons) with

Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Theoretical approach Pseudo-relativistic Hartree-Fock (HFR) method (R.D. Cowan, The Theory of Atomic Structure and Spectra, Univ. California Press, Berkeley, 1981) Based on the Schrödinger equation (atom with N electrons) with Central field approximation  One-electron wavefunctions

Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Theoretical approach Pseudo-relativistic Hartree-Fock (HFR) method (R.D. Cowan, The Theory of Atomic Structure and Spectra, Univ. California Press, Berkeley, 1981) Based on the Schrödinger equation (atom with N electrons) with Central field approximation  One-electron wavefunctions Atomic wavefunctions (Slater determinant)

Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Theoretical approach Pseudo-relativistic Hartree-Fock (HFR) method (R.D. Cowan, The Theory of Atomic Structure and Spectra, Univ. California Press, Berkeley, 1981) Hartree-Fock equations

Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Theoretical approach Pseudo-relativistic Hartree-Fock (HFR) method (R.D. Cowan, The Theory of Atomic Structure and Spectra, Univ. California Press, Berkeley, 1981) Hartree-Fock equations Resolution of Hartree-Fock equations (self-consistent field) Starting P i (r i )  Calculate potentials  Solve HF equations  New P i (r i ) Same as before ? STOP NO YES

Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Theoretical approach Pseudo-relativistic Hartree-Fock (HFR) method (R.D. Cowan, The Theory of Atomic Structure and Spectra, Univ. California Press, Berkeley, 1981) Multiconfiguration approach (Slater-Condon)

Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Theoretical approach Pseudo-relativistic Hartree-Fock (HFR) method (R.D. Cowan, The Theory of Atomic Structure and Spectra, Univ. California Press, Berkeley, 1981) Multiconfiguration approach (Slater-Condon) Relativistic effects Included perturbationaly (spin-orbit, mass-velocity, Darwin term) Good agreement with fully relativistic methods

Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Theoretical approach Pseudo-relativistic Hartree-Fock (HFR) method (R.D. Cowan, The Theory of Atomic Structure and Spectra, Univ. California Press, Berkeley, 1981) Multiconfiguration approach (Slater-Condon) Relativistic effects Ab initio or semi-empirical approach Included perturbationaly (spin-orbit, mass-velocity, Darwin term) Good agreement with fully relativistic methods Experimental energy levels can be used to optimize the radial parameters (configuration average energies, electrostatic interaction integrals, spin-orbit parameters)

Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Theoretical approach Pseudo-relativistic Hartree-Fock (HFR) method (R.D. Cowan, The Theory of Atomic Structure and Spectra, Univ. California Press, Berkeley, 1981) Multiconfiguration approach (Slater-Condon) Example : Po (6p 4 – 6p 3 6d transitions)

Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Theoretical approach Pseudo-relativistic Hartree-Fock (HFR) method (R.D. Cowan, The Theory of Atomic Structure and Spectra, Univ. California Press, Berkeley, 1981) Multiconfiguration approach (Slater-Condon) Example : Po (6p 4 – 6p 3 6d transitions) Intravalence correlation (single excitations up to n=6, l=3) Even parity 4f 14 5d 10 6s 2 6p 4 4f 14 5d 10 6s 2 6p 3 5f 4f 14 5d 10 6s 2 6p 3 6f 4f 14 5d 10 6s 2 6p 2 6d 2 Odd parity 4f 14 5d 10 6s 2 6p 3 6d 4f 14 5d 10 6s 2 6p 2 6d5f 4f 14 5d 10 6s 2 6p 2 6d6f

Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Theoretical approach Pseudo-relativistic Hartree-Fock (HFR) method (R.D. Cowan, The Theory of Atomic Structure and Spectra, Univ. California Press, Berkeley, 1981) Multiconfiguration approach (Slater-Condon) Example : Po (6p 4 – 6p 3 6d transitions) Intravalence correlation (single excitations up to n=6, l=3) Even parity 4f 14 5d 10 6s 2 6p 4 4f 14 5d 10 6s 2 6p 3 5f 4f 14 5d 10 6s 2 6p 3 6f 4f 14 5d 10 6s 2 6p 2 6d 2 Odd parity 4f 14 5d 10 6s 2 6p 3 6d 4f 14 5d 10 6s 2 6p 2 6d5f 4f 14 5d 10 6s 2 6p 2 6d6f Core-valence correlation (single excitations from 4f, 5d, 6s) Even parity 4f 14 5d 10 6s6p 4 6d 4f 14 5d 10 6s6p 3 6d5f 4f 14 5d 10 6s6p 3 6d6f 4f 14 5d 9 6s 2 6p 4 6d 4f 14 5d 9 6s 2 6p 3 6d5f 4f 14 5d 9 6s 2 6p 3 6d6f 4f 13 5d 10 6s 2 6p 5 4f 13 5d 10 6s 2 6p 4 5f 4f 13 5d 10 6s 2 6p 4 6f 4f 13 5d 10 6s 2 6p 3 6d 2 Odd parity 4f 14 5d 10 6s6p 5 4f 14 5d 10 6s6p 4 5f 4f 14 5d 10 6s6p 4 6f 4f 14 5d 10 6s6p 3 6d 2 4f 14 5d 9 6s 2 6p 5 4f 14 5d 9 6s 2 6p 4 5f 4f 14 5d 9 6s 2 6p 4 6f 4f 14 5d 9 6s 2 6p 3 6d 2 4f 13 5d 10 6s 2 6p 4 6d 4f 13 5d 10 6s 2 6p 3 6d5f 4f 13 5d 10 6s 2 6p 3 6d6f

Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Theoretical approach Pseudo-relativistic Hartree-Fock (HFR) method (R.D. Cowan, The Theory of Atomic Structure and Spectra, Univ. California Press, Berkeley, 1981) Multiconfiguration approach (Slater-Condon) Example : Po (6p 4 – 6p 3 6d transitions) Intravalence correlation (single excitations up to n=6, l=3) Even parity 4f 14 5d 10 6s 2 6p 4 4f 14 5d 10 6s 2 6p 3 5f 4f 14 5d 10 6s 2 6p 3 6f 4f 14 5d 10 6s 2 6p 2 6d 2 Odd parity 4f 14 5d 10 6s 2 6p 3 6d 4f 14 5d 10 6s 2 6p 2 6d5f 4f 14 5d 10 6s 2 6p 2 6d6f Core-valence correlation (single excitations from 4f, 5d, 6s) Even parity 4f 14 5d 10 6s6p 4 6d 4f 14 5d 10 6s6p 3 6d5f 4f 14 5d 10 6s6p 3 6d6f 4f 14 5d 9 6s 2 6p 4 6d 4f 14 5d 9 6s 2 6p 3 6d5f 4f 14 5d 9 6s 2 6p 3 6d6f 4f 13 5d 10 6s 2 6p 5 4f 13 5d 10 6s 2 6p 4 5f 4f 13 5d 10 6s 2 6p 4 6f 4f 13 5d 10 6s 2 6p 3 6d 2 Odd parity 4f 14 5d 10 6s6p 5 4f 14 5d 10 6s6p 4 5f 4f 14 5d 10 6s6p 4 6f 4f 14 5d 10 6s6p 3 6d 2 4f 14 5d 9 6s 2 6p 5 4f 14 5d 9 6s 2 6p 4 5f 4f 14 5d 9 6s 2 6p 4 6f 4f 14 5d 9 6s 2 6p 3 6d 2 4f 13 5d 10 6s 2 6p 4 6d 4f 13 5d 10 6s 2 6p 3 6d5f 4f 13 5d 10 6s 2 6p 3 6d6f 196 states594 states

Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Theoretical approach Pseudo-relativistic Hartree-Fock (HFR) method (R.D. Cowan, The Theory of Atomic Structure and Spectra, Univ. California Press, Berkeley, 1981) Multiconfiguration approach (Slater-Condon) Example : Po (6p 4 – 6p 3 6d transitions) Intravalence correlation (single excitations up to n=6, l=3) Even parity 4f 14 5d 10 6s 2 6p 4 4f 14 5d 10 6s 2 6p 3 5f 4f 14 5d 10 6s 2 6p 3 6f 4f 14 5d 10 6s 2 6p 2 6d 2 Odd parity 4f 14 5d 10 6s 2 6p 3 6d 4f 14 5d 10 6s 2 6p 2 6d5f 4f 14 5d 10 6s 2 6p 2 6d6f Core-valence correlation (single excitations from 4f, 5d, 6s) Even parity 4f 14 5d 10 6s6p 4 6d 4f 14 5d 10 6s6p 3 6d5f 4f 14 5d 10 6s6p 3 6d6f 4f 14 5d 9 6s 2 6p 4 6d 4f 14 5d 9 6s 2 6p 3 6d5f 4f 14 5d 9 6s 2 6p 3 6d6f 4f 13 5d 10 6s 2 6p 5 4f 13 5d 10 6s 2 6p 4 5f 4f 13 5d 10 6s 2 6p 4 6f 4f 13 5d 10 6s 2 6p 3 6d 2 Odd parity 4f 14 5d 10 6s6p 5 4f 14 5d 10 6s6p 4 5f 4f 14 5d 10 6s6p 4 6f 4f 14 5d 10 6s6p 3 6d 2 4f 14 5d 9 6s 2 6p 5 4f 14 5d 9 6s 2 6p 4 5f 4f 14 5d 9 6s 2 6p 4 6f 4f 14 5d 9 6s 2 6p 3 6d 2 4f 13 5d 10 6s 2 6p 4 6d 4f 13 5d 10 6s 2 6p 3 6d5f 4f 13 5d 10 6s 2 6p 3 6d6f states states 196 states594 states

Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Theoretical approach Core-polarization corrections (HFR+CPOL method) (see e.g. Quinet et al., M.N.R.A.S. 307, 934, 1999; Quinet et al., J. Alloys Compd 344, 255, 2002) Core-polarization model potential Intravalence correlation considered within a configuration interaction expansion Core-valence correlation represented by a core-polarization model potential depending on two parameters (dipole polarizability  d and cut-off radius r c )

Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Theoretical approach Core-polarization corrections (HFR+CPOL method) (see e.g. Quinet et al., M.N.R.A.S. 307, 934, 1999; Quinet et al., J. Alloys Compd 344, 255, 2002) Core-polarization model potential Corrected dipole radial integral Intravalence correlation considered within a configuration interaction expansion Core-valence correlation represented by a core-polarization model potential depending on two parameters (dipole polarizability  d and cut-off radius r c ) replaced by

Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Atomic structure calculations in polonium Journal of Quantitative Spectroscopy and Radiative Transfer 145 (2014)

Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Atomic structure calculations in polonium Model A : 6s 2 6p 4 + 6s 2 6p 3 nl (nl = 7s, 7p, 6d, 7d, 5f, 6f) Model B : Model A + 6s 2 6p 2 nln’l’ Model C : Model B + 6s 2 6pnln’l’n’’l’’ Model D : Model C + 6s6p 4 nl + 6s6p 3 nln’l’ Model E : Model D + 6p 6 + 6p 5 nl + 6p 4 nln’l’ Model F : Model E + [1s 2 … 5d 10 ] core-polarization (Po 6+ core :  d = 2.00 a.u., r c = 1.17 a.u.) Pseudo-relativistic Hartree-Fock models considered in the present work Intravalence interactions within 6p 3 nl Single excitations from 6p Double excitations from 6p Single excitations from 6s Double excitations from 6s Core-polarization up to 5d

Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Atomic structure calculations in polonium Model A : 6s 2 6p 4 + 6s 2 6p 3 nl (nl = 7s, 7p, 6d, 7d, 5f, 6f) Model B : Model A + 6s 2 6p 2 nln’l’ Model C : Model B + 6s 2 6pnln’l’n’’l’’ Model D : Model C + 6s6p 4 nl + 6s6p 3 nln’l’ Model E : Model D + 6p 6 + 6p 5 nl + 6p 4 nln’l’ Model F : Model E + [1s 2 … 5d 10 ] core-polarization (Po 6+ core :  d = 2.00 a.u., r c = 1.17 a.u.) Pseudo-relativistic Hartree-Fock models considered in the present work

Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Atomic structure calculations in polonium Model A : 6s 2 6p 4 + 6s 2 6p 3 nl (nl = 7s, 7p, 6d, 7d, 5f, 6f) Model B : Model A + 6s 2 6p 2 nln’l’ Model C : Model B + 6s 2 6pnln’l’n’’l’’ Model D : Model C + 6s6p 4 nl + 6s6p 3 nln’l’ Model E : Model D + 6p 6 + 6p 5 nl + 6p 4 nln’l’ Model F : Model E + [1s 2 … 5d 10 ] core-polarization (Po 6+ core :  d = 2.00 a.u., r c = 1.17 a.u.) Pseudo-relativistic Hartree-Fock models considered in the present work

Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Atomic structure calculations in polonium Experiment (NIST)Theory (This work) Config.TermJE (cm -1 ) J1 st component2 nd component3 rd component 6p 43P3P % 6p 4 3 P20% 6p 4 1 D 6p 43P3P % 6p 4 3 P43% 6p 4 1 S 6p 43P3P % 6p 4 3 P 6p 41D1D % 6p 4 1 D20% 6p 4 3 P 6p 41S1S % 6p 4 1 S43% 6p 4 3 P 6p 3 ( 4 S)7p 5 P ?3 ? % 6p 3 ( 4 S)7p 5 P16% 6p 3 ( 4 S)7p 3 P15% 6p 3 ( 2 P)7p 3 P 6p 3 ( 4 S)7p?? % 6p 3 ( 4 S)7p 5 P15% 6p 3 ( 2 P)7p 3 D13% 6p 3 ( 2 P)7p 3 P 6p 3 ( 4 S)7p?1 or % 6p 3 ( 4 S)7p 5 P31% 6p 3 ( 2 P)7p 3 D8% 6p 3 ( 2 D)7p 3 F % 6p 3 ( 4 S)7p 3 P19% 6p 3 ( 4 S)7p 5 P16% 6p 3 ( 2 P)7p 3 S % 6p 3 ( 4 S)7p 3 P17% 6p 3 ( 2 P)7p 1 D13% 6p 3 ( 2 P)7p 3 P % 6p 3 ( 4 S)7p 3 P19% 6p 3 ( 2 P)7p 1 S12% 6p 3 ( 2 D)7p 3 P Even-parity energy levels

Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Atomic structure calculations in polonium Experiment (NIST)Theory (This work) Config.TermJE (cm -1 ) J1 st component2 nd component3 rd component 6p 43P3P % 6p 4 3 P20% 6p 4 1 D 6p 43P3P % 6p 4 3 P43% 6p 4 1 S 6p 43P3P % 6p 4 3 P 6p 41D1D % 6p 4 1 D20% 6p 4 3 P 6p 41S1S % 6p 4 1 S43% 6p 4 3 P 6p 3 ( 4 S)7p 5 P ?3 ? % 6p 3 ( 4 S)7p 5 P16% 6p 3 ( 4 S)7p 3 P15% 6p 3 ( 2 P)7p 3 P 6p 3 ( 4 S)7p?? % 6p 3 ( 4 S)7p 5 P15% 6p 3 ( 2 P)7p 3 D13% 6p 3 ( 2 P)7p 3 P 6p 3 ( 4 S)7p?1 or % 6p 3 ( 4 S)7p 5 P31% 6p 3 ( 2 P)7p 3 D8% 6p 3 ( 2 D)7p 3 F % 6p 3 ( 4 S)7p 3 P19% 6p 3 ( 4 S)7p 5 P16% 6p 3 ( 2 P)7p 3 S % 6p 3 ( 4 S)7p 3 P17% 6p 3 ( 2 P)7p 1 D13% 6p 3 ( 2 P)7p 3 P % 6p 3 ( 4 S)7p 3 P19% 6p 3 ( 2 P)7p 1 S12% 6p 3 ( 2 D)7p 3 P Even-parity energy levels

Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Atomic structure calculations in polonium Experiment (NIST)Theory (This work) Config.TermJE (cm -1 ) J1 st component2 nd component3 rd component 6p 43P3P % 6p 4 3 P20% 6p 4 1 D 6p 43P3P % 6p 4 3 P43% 6p 4 1 S 6p 43P3P % 6p 4 3 P 6p 41D1D % 6p 4 1 D20% 6p 4 3 P 6p 41S1S % 6p 4 1 S43% 6p 4 3 P 6p 3 ( 4 S)7p 5 P ?3 ? % 6p 3 ( 4 S)7p 5 P16% 6p 3 ( 4 S)7p 3 P15% 6p 3 ( 2 P)7p 3 P 6p 3 ( 4 S)7p?? % 6p 3 ( 4 S)7p 5 P15% 6p 3 ( 2 P)7p 3 D13% 6p 3 ( 2 P)7p 3 P 6p 3 ( 4 S)7p?1 or % 6p 3 ( 4 S)7p 5 P31% 6p 3 ( 2 P)7p 3 D8% 6p 3 ( 2 D)7p 3 F % 6p 3 ( 4 S)7p 3 P19% 6p 3 ( 4 S)7p 5 P16% 6p 3 ( 2 P)7p 3 S % 6p 3 ( 4 S)7p 3 P17% 6p 3 ( 2 P)7p 1 D13% 6p 3 ( 2 P)7p 3 P % 6p 3 ( 4 S)7p 3 P19% 6p 3 ( 2 P)7p 1 S12% 6p 3 ( 2 D)7p 3 P Even-parity energy levels

Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Atomic structure calculations in polonium Experiment (NIST)Theory (This work) Config.TermJE (cm -1 ) J1 st component2 nd component3 rd component 6p 43P3P % 6p 4 3 P20% 6p 4 1 D 6p 43P3P % 6p 4 3 P43% 6p 4 1 S 6p 43P3P % 6p 4 3 P 6p 41D1D % 6p 4 1 D20% 6p 4 3 P 6p 41S1S % 6p 4 1 S43% 6p 4 3 P 6p 3 ( 4 S)7p 5 P ?3 ? % 6p 3 ( 4 S)7p 5 P16% 6p 3 ( 4 S)7p 3 P15% 6p 3 ( 2 P)7p 3 P 6p 3 ( 4 S)7p?? % 6p 3 ( 4 S)7p 5 P15% 6p 3 ( 2 P)7p 3 D13% 6p 3 ( 2 P)7p 3 P 6p 3 ( 4 S)7p?1 or % 6p 3 ( 4 S)7p 5 P31% 6p 3 ( 2 P)7p 3 D8% 6p 3 ( 2 D)7p 3 F % 6p 3 ( 4 S)7p 3 P19% 6p 3 ( 4 S)7p 5 P16% 6p 3 ( 2 P)7p 3 S % 6p 3 ( 4 S)7p 3 P17% 6p 3 ( 2 P)7p 1 D13% 6p 3 ( 2 P)7p 3 P % 6p 3 ( 4 S)7p 3 P19% 6p 3 ( 2 P)7p 1 S12% 6p 3 ( 2 D)7p 3 P Even-parity energy levels Se4p 3 ( 4 S)5p 5 PJ = Te5p 3 ( 4 S)6p 5 PJ = [Experimental data] J = [Experimental data] J = J = J =

Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Atomic structure calculations in polonium Experiment (NIST)Theory (This work) Config.TermJE (cm -1 ) J1 st component2 nd component3 rd component 6p 3 ( 4 S)7s 5 S° % 6p 3 ( 4 S)7s 5 S32% 6p 3 ( 2 P)7s 3 P9% 6p 3 ( 2 D)7s 3 D 6p 3 ( 4 S)7s 3 S° % 6p 3 ( 4 S)7s 3 S22% 6p 3 ( 2 P)7s 1 P20% 6p 3 ( 2 D)7s 3 D 6p 3 ( 4 S)6d 5 D° ? % 6p 3 ( 4 S)6d 5 D18% 6p 3 ( 4 S)6d 3 D15% 6p 3 ( 2 P)6d 3 D 6p 3 ( 4 S)6d 5 D° ? % 6p 3 ( 4 S)6d 5 D17% 6p 3 ( 2 P)6d 3 D14% 6p 3 ( 2 P)6d 3 F 6p 3 ( 4 S)6d° ? % 6p 3 ( 4 S)6d 5 D17% 6p 3 ( 2 P)6d 3 P12% 6p 3 ( 2 P)6d 3 D % 6p 3 ( 4 S)6d 5 D31% 6p 3 ( 2 P)6d 3 F8% 6p 3 ( 2 D)6d 3 G 6p 3 ( 4 S)6d° ? % 6p 3 ( 4 S)6d 3 D21% 6p 3 ( 4 S)6d 5 D6% 6p 3 ( 2 D)6d 3 P % 6p 3 ( 4 S)6d 5 D30% 6p 3 ( 2 P)6d 3 P7% 6p 3 ( 2 D)6d 3 P % 6p 3 ( 4 S)6d 3 D20% 6p 3 ( 2 P)6d 1 F11% 6p 3 ( 2 D)6d 3 G [odd] ?° ? % 6p 3 ( 4 S)6d 3 D16% 6p 3 ( 2 P)6d 1 P10% 6p 3 ( 2 P)6d 3 P [odd] ?° ?2 ? % 6p 3 ( 2 D)7s 3 D36% 6p 3 ( 4 S)7s 5 S16% 6p 3 ( 2 D)7s 1 D 6p 3 ( 2 D)7S 3 D° ?1 ? % 6p 3 ( 2 D)7s 3 D36% 6p 3 ( 4 S)7s 3 S3% 6p 3 ( 4 S)7d 3 D 6p 3 ( 4 S)7d° ?2 ? % 6p 3 ( 4 S)7d 5 D20% 6p 3 ( 4 S)7d 3 D14% 6p 3 ( 2 P)7d 3 D Odd-parity energy levels

Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Atomic structure calculations in polonium Experiment (NIST)Theory (This work) Config.TermJE (cm -1 ) J1 st component2 nd component3 rd component 6p 3 ( 4 S)7s 5 S° % 6p 3 ( 4 S)7s 5 S32% 6p 3 ( 2 P)7s 3 P9% 6p 3 ( 2 D)7s 3 D 6p 3 ( 4 S)7s 3 S° % 6p 3 ( 4 S)7s 3 S22% 6p 3 ( 2 P)7s 1 P20% 6p 3 ( 2 D)7s 3 D 6p 3 ( 4 S)6d 5 D° ? % 6p 3 ( 4 S)6d 5 D18% 6p 3 ( 4 S)6d 3 D15% 6p 3 ( 2 P)6d 3 D 6p 3 ( 4 S)6d 5 D° ? % 6p 3 ( 4 S)6d 5 D17% 6p 3 ( 2 P)6d 3 D14% 6p 3 ( 2 P)6d 3 F 6p 3 ( 4 S)6d° ? % 6p 3 ( 4 S)6d 5 D17% 6p 3 ( 2 P)6d 3 P12% 6p 3 ( 2 P)6d 3 D % 6p 3 ( 4 S)6d 5 D31% 6p 3 ( 2 P)6d 3 F8% 6p 3 ( 2 D)6d 3 G 6p 3 ( 4 S)6d° ? % 6p 3 ( 4 S)6d 3 D21% 6p 3 ( 4 S)6d 5 D6% 6p 3 ( 2 D)6d 3 P % 6p 3 ( 4 S)6d 5 D30% 6p 3 ( 2 P)6d 3 P7% 6p 3 ( 2 D)6d 3 P % 6p 3 ( 4 S)6d 3 D20% 6p 3 ( 2 P)6d 1 F11% 6p 3 ( 2 D)6d 3 G [odd] ?° ? % 6p 3 ( 4 S)6d 3 D16% 6p 3 ( 2 P)6d 1 P10% 6p 3 ( 2 P)6d 3 P [odd] ?° ?2 ? % 6p 3 ( 2 D)7s 3 D36% 6p 3 ( 4 S)7s 5 S16% 6p 3 ( 2 D)7s 1 D 6p 3 ( 2 D)7S 3 D° ?1 ? % 6p 3 ( 2 D)7s 3 D36% 6p 3 ( 4 S)7s 3 S3% 6p 3 ( 4 S)7d 3 D 6p 3 ( 4 S)7d° ?2 ? % 6p 3 ( 4 S)7d 5 D20% 6p 3 ( 4 S)7d 3 D14% 6p 3 ( 2 P)7d 3 D Odd-parity energy levels

Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Atomic structure calculations in polonium Radiative transitions (transition probabilities and oscillator strengths) E f ik with A ki in s -1,  E ki in cm -1, in Å

Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Atomic structure calculations in polonium Model A : 6s 2 6p 4 + 6s 2 6p 3 nl (nl = 7s, 7p, 6d, 7d, 5f, 6f) Model B : Model A + 6s 2 6p 2 nln’l’ Model C : Model B + 6s 2 6pnln’l’n’’l’’ Model D : Model C + 6s6p 4 nl + 6s6p 3 nln’l’ Model E : Model D + 6p 6 + 6p 5 nl + 6p 4 nln’l’ Model F : Model E + [1s 2 … 5d 10 ] core-polarization (Po 6+ core :  d = 2.00 a.u., r c = 1.17 a.u.) Radiative transitions (transition probabilities and oscillator strengths)

Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Atomic structure calculations in polonium Radiative transitions Model A : 6s 2 6p 4 + 6s 2 6p 3 nl (nl = 7s, 7p, 6d, 7d, 5f, 6f) Model B : Model A + 6s 2 6p 2 nln’l’ Model C : Model B + 6s 2 6pnln’l’n’’l’’ Model D : Model C + 6s6p 4 nl + 6s6p 3 nln’l’ Model E : Model D + 6p 6 + 6p 5 nl + 6p 4 nln’l’ Model F : Model E + [1s 2 … 5d 10 ] core-polarization (Po 6+ core :  d = 2.00 a.u., r c = 1.17 a.u.)

Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Atomic structure calculations in polonium Radiative transitions (oscillator strengths and transition probabilities) (nm) a Lower level (cm -1 ) b Upper level (cm -1 ) b log gfgA (s -1 ) J=2 (even) J=1 (odd) E J=2 (even) J=2 (odd) E J=2 (even) J=1 (odd) E J=2 (even) J=2 (odd) E J=2 (even) J=1 (odd) E J=2 (even) J=3 (odd) E J=0 (even) J=1 (odd) E J=0 (even) J=1 (odd) E J=0 (even) J=1 (odd) E J=1 (even) J=2 (odd) E J=2 (even) J=1 (odd) E J=1 (even) J=1 (odd) E J=1 (even) J=2 (odd) E J=2 (even) J=2 (odd) E J=2 (even) J=2 (odd) E J=1 (even) J=2 (odd) E J=1 (even) J=1 (odd) E J=2 (even) J=1 (odd) E J=1 (even) J=2 (odd) E J=2 (even) J=2 (odd) E J=0 (even) J=1 (odd) E J=2 (even) J=1 (odd) E J=2 (even) J=1 (odd) E J=2 (even) J=3 (odd) E J=1 (even) J=1 (odd) E J=2 (even) J=2 (odd) E J=0 (even) J=1 (odd) E J=2 (odd) J=3 (even) E J=2 (odd) J=2 (even) E J=2 (odd) J=1 (even) E J=1 (odd) J=2 (even) E+7

Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Atomic structure calculations in polonium Comparison with experiment

Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Atomic structure calculations in astatine Up to very recently… R. McLaughlin, J.O.S.A. 54, 965 (1964) Config.TermJE (cm -1 ) 6p 52 P°3/20.0 6p 4 ( 3 P)7s 4P4P5/ p 4 ( 3 P)7s 4P4P3/

Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Atomic structure calculations in astatine S. Rothe et al., Nature Commun. 4, 1835 (2013)S. Raeder et al., Hyperfine Interact. 227, 77 (2014) New experimental analyses (laser spectroscopy – ionization potential)

Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Atomic structure calculations in astatine S. Rothe et al., Nature Commun. 4, 1835 (2013)S. Raeder et al., Hyperfine Interact. 227, 77 (2014) New experimental analyses (laser spectroscopy – ionization potential)

Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Atomic structure calculations in astatine Pseudo-relativistic Hartree-Fock models Model A : 6s 2 6p 5 + 6s 2 6p 4 nl (nl = 7s, 7p, 6d, 7d, 5f, 6f) Model B : Model A + 6s 2 6p 3 nln’l’ Model C : Model B + 6s 2 6p 2 nln’l’n’’l’’ Model D : Model C + 6s6p 5 nl + 6s6p 4 nln’l’ Model E : Model D + 6p 6 nl + 6p 5 nln’l’ Model F : Model E + [1s 2 … 5d 10 ] core-polarization (At 7+ core :  d = 1.8 a.u., r c = 1.12 a.u.)

Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Atomic structure calculations in astatine Energy levels within the 6p 4 7p configuration

Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Atomic structure calculations in astatine Energy levels within the 6p 4 7p configuration (J=3/2) (J=7/2) (J=1/2) (J=5/2) (J=3/2) (J=1/2) (J=7/2) (J=5/2) (J=5/2) (J=3/2) Not to scale ! Experiment Theory (Raeder et al. 2014) (This work)

Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Atomic structure calculations in astatine Energy levels within the 6p 4 7p configuration (J=3/2) (J=7/2) (J=1/2) (J=5/2) (J=3/2) (J=1/2) (J=7/2) (J=5/2) (J=5/2) (J=3/2) Not to scale ! Experiment Theory (Raeder et al. 2014) (This work)

Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Atomic structure calculations in astatine Energy levels within the 6p 4 7p configuration (J=3/2) (J=7/2) (J=1/2) (J=5/2) (J=3/2) (J=1/2) (J=7/2) (J=5/2) (J=5/2) (J=3/2) Not to scale ! Experiment Theory (Raeder et al. 2014) (This work) Rothe et al. (2013); Raeder et al. (2014) 6p 4 7s (J=3/2) (J=5/2) 6p 4 7p (J=3/2) (J=7/2) (J=1/2) (J=5/2)

Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Atomic structure calculations in astatine Energy levels within the 6p 4 7p configuration (J=3/2) (J=7/2) (J=1/2) (J=5/2) (J=3/2) (J=1/2) (J=7/2) (J=5/2) (J=5/2) (J=3/2) Not to scale ! Experiment Theory (Raeder et al. 2014) (This work) Rothe et al. (2013); Raeder et al. (2014) 6p 4 7s (J=3/2) (J=5/2) 6p 4 7p (J=3/2) (J=7/2) (J=1/2) (J=5/2)

Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Atomic structure calculations in astatine Energy levels within the 6p 4 7p configuration (J=3/2) (J=7/2) (J=1/2) (J=5/2) (J=3/2) (J=1/2) (J=7/2) (J=5/2) (J=5/2) (J=3/2) Not to scale ! Experiment Theory (Raeder et al. 2014) (This work) Rothe et al. (2013); Raeder et al. (2014) 6p 4 7s (J=3/2) (J=5/2) 6p 4 7p (J=3/2) (J=7/2) (J=1/2) (J=5/2) == 1/2 == 7/2

Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Atomic structure calculations in astatine Energy levels within the 6p 4 7p configuration (J=3/2) (J=7/2) (J=1/2) (J=5/2) (J=3/2) (J=1/2) (J=7/2) (J=5/2) (J=5/2) (J=3/2) Not to scale ! Experiment Theory (Raeder et al. 2014) (This work) Rothe et al. (2013); Raeder et al. (2014) 6p 4 7s (J=3/2) (J=5/2) 6p 4 7p (J=3/2) (J=7/2) (J=1/2) (J=5/2) == 1/2 == 7/2

Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Atomic structure calculations in astatine Classification of experimentally observed energy levels E(cm -1 )J1 st component2 nd component3 rd component 0.00(odd)3/298% 6p 5 2 P (even)5/278% 6p 4 ( 3 P)7s 4 P20% 6p 4 ( 1 D)7s 2 D (even)3/260% 6p 4 ( 3 P)7s 2 P23% 6p 4 ( 1 D)7s 2 D15% 6p 4 ( 3 P)7s 4 P (odd)5/243% 6p 4 ( 3 P)7p 2 D35% 6p 4 ( 3 P)7p 4 P11% 6p 4 ( 1 D)7p 2 D (odd)7/277% 6p 4 ( 3 P)7p 4 D22% 6p 4 ( 1 D)7p 2 F (odd)1/237% 6p 4 ( 3 P)7p 2 S24% 6p 4 ( 1 D)7p 2 P24% 6p 4 ( 3 P)7p 2 P (odd)3/242% 6p 4 ( 3 P)7p 2 P21% 6p 4 ( 3 P)7p 4 S12% 6p 4 ( 1 D)7p 2 D

Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Atomic structure calculations in astatine Classification of experimentally observed energy levels E(cm -1 )J1 st component2 nd component3 rd component 0.00(odd)3/298% 6p 5 2 P (even)5/278% 6p 4 ( 3 P)7s 4 P20% 6p 4 ( 1 D)7s 2 D (even)3/260% 6p 4 ( 3 P)7s 2 P23% 6p 4 ( 1 D)7s 2 D15% 6p 4 ( 3 P)7s 4 P (odd)5/243% 6p 4 ( 3 P)7p 2 D35% 6p 4 ( 3 P)7p 4 P11% 6p 4 ( 1 D)7p 2 D (odd)7/277% 6p 4 ( 3 P)7p 4 D22% 6p 4 ( 1 D)7p 2 F (odd)1/237% 6p 4 ( 3 P)7p 2 S24% 6p 4 ( 1 D)7p 2 P24% 6p 4 ( 3 P)7p 2 P (odd)3/242% 6p 4 ( 3 P)7p 2 P21% 6p 4 ( 3 P)7p 4 S12% 6p 4 ( 1 D)7p 2 D

Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Atomic structure calculations in astatine  (nm) Lower level (cm -1 )Upper level (cm -1 )log gfgA (s -1 ) J=3/2 (odd) J=3/2 (even) E J=3/2 (odd) J=5/2 (even) E J=5/2 (even) J=3/2 (odd) E J=5/2 (even) J=7/2 (odd) E J=5/2 (even) J=5/2 (odd) E J=3/2 (even) J=3/2 (odd) E J=3/2 (even) J=1/2 (odd) E J=3/2 (even) J=5/2 (odd) E+7 Radiative transitions (oscillator strengths, transition probabilities)

Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Atomic structure calculations in astatine Identification of new high lying odd-parity energy levels S. Raeder et al., Hyperfine Interact. 227, 77 (2014) Odd-parity levels cm cm cm cm -1 6p 4 np

Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Atomic structure calculations in astatine Identification of new high lying odd-parity energy levels S. Raeder et al., Hyperfine Interact. 227, 77 (2014) Odd-parity levels cm cm cm cm -1 6p 4 np 6p 4 14p 6p 4 13p 6p 4 12p 6p 4 11p 6p 4 10p 6p 4 9p 6p 4 8p 6p 4 7p Theory Experiment

Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Atomic structure calculations in astatine Identification of new high lying odd-parity energy levels E(cm -1 )J1 st component2 nd component3 rd component (odd)5/241% 6p 4 ( 3 P)9p 2 D36% 6p 4 ( 3 P)9p 4 P14% 6p 4 ( 3 P)9p 2 D (odd)3/243% 6p 4 ( 3 P)9p 2 P20% 6p 4 ( 3 P)9p 4 S12% 6p 4 ( 1 D)9p 2 D (odd)5/241% 6p 4 ( 3 P)10p 2 D36% 6p 4 ( 3 P)10p 4 P14% 6p 4 ( 3 P)10p 2 D (odd)3/243% 6p 4 ( 3 P)10p 2 P20% 6p 4 ( 3 P)10p 4 S12% 6p 4 ( 1 D)10p 2 D

Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Atomic structure calculations in astatine Identification of new high lying odd-parity energy levels E(cm -1 )J1 st component2 nd component3 rd component (odd)5/241% 6p 4 ( 3 P)9p 2 D36% 6p 4 ( 3 P)9p 4 P14% 6p 4 ( 3 P)9p 2 D (odd)3/243% 6p 4 ( 3 P)9p 2 P20% 6p 4 ( 3 P)9p 4 S12% 6p 4 ( 1 D)9p 2 D (odd)5/241% 6p 4 ( 3 P)10p 2 D36% 6p 4 ( 3 P)10p 4 P14% 6p 4 ( 3 P)10p 2 D (odd)3/243% 6p 4 ( 3 P)10p 2 P20% 6p 4 ( 3 P)10p 4 S12% 6p 4 ( 1 D)10p 2 D  E ion = cm -1 R At = cm -1 (A = 210) Quantum defect 

Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Atomic structure calculations in astatine Estimated energy level values in the 6p 4 ( 3 P)np Rydberg series Config.Level  Estim. (cm -1 )Obs. (cm -1 )Config.Level  Estim. (cm -1 )Obs. (cm -1 ) 6p 4 ( 3 P)8p 2 D 5/ p 4 ( 3 P)19p 2 D 5/ P 3/ P 3/ p 4 ( 3 P)9p 2 D 5/ p 4 ( 3 P)20p 2 D 5/ P 3/ P 3/ p 4 ( 3 P)10p 2 D 5/ p 4 ( 3 P)21p 2 D 5/ P 3/ P 3/ p 4 ( 3 P)11p 2 D 5/ p 4 ( 3 P)22p 2 D 5/ P 3/ P 3/ p 4 ( 3 P)12p 2 D 5/ p 4 ( 3 P)23p 2 D 5/ P 3/ P 3/ p 4 ( 3 P)13p 2 D 5/ p 4 ( 3 P)24p 2 D 5/ P 3/ P 3/ p 4 ( 3 P)14p 2 D 5/ p 4 ( 3 P)25p 2 D 5/ P 3/ P 3/ p 4 ( 3 P)15p 2 D 5/ p 4 ( 3 P)26p 2 D 5/ P 3/ P 3/ p 4 ( 3 P)16p 2 D 5/ p 4 ( 3 P)27p 2 D 5/ P 3/ P 3/ p 4 ( 3 P)17p 2 D 5/ p 4 ( 3 P)28p 2 D 5/ P 3/ P 3/ p 4 ( 3 P)18p 2 D 5/ p 4 ( 3 P)29p 2 D 5/ P 3/ P 3/

Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Summary and conclusions  Theoretical investigation of polonium and astatine atomic structures  Pseudo-relativistic Hartree-Fock method  Polonium : - Spectroscopic designation of 6p 3 7p, 6p 3 6d, 6p 3 7s and 6p 3 7d energy levels - Radiative transition parameters for 31 spectral lines in the wavelength region 175 – 987 nm  Astatine : - Spectroscopic designation of 4 levels belonging to 6p 4 7p - Radiative transition parameters for 8 spectral lines in the wavelength region 216 – 915 nm - Identification of 4 new levels in 6p 4 9p and 6p 4 10p configurations - Predicted energies for levels within the 6p 4 np Rydberg series

Thank you for your attention