A new theoretical insight into the spectroscopic properties of polonium and astatine atoms Pascal Quinet Spectroscopie Atomique et Physique des Atomes Froids, Université de Liège & Astrophysique et Spectroscopie, Université de Mons
Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Plan of the talk Some properties of polonium and astatine atoms Experimental spectrum and energy levels of polonium Experimental spectrum and energy levels of astatine Theoretical approach Atomic structure calculations in polonium Atomic structure calculations in astatine Summary and conclusions
Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Some properties of polonium and astatine atoms Polonium (Po) Astatine (At) Atomic number :84 Ground electronic configuration :[Xe]4f 14 5d 10 6s 2 6p 4 Excited electronic configurations :[Xe]4f 14 5d 10 6s 2 6p 3 nl (nl = 6d, 7s, 7p, 7d, …) Known isotopes :42 (A = 186 – 227) Longest half-life :103 years ( 209 Po) Atomic number :85 Ground electronic configuration :[Xe]4f 14 5d 10 6s 2 6p 5 Excited electronic configurations :[Xe]4f 14 5d 10 6s 2 6p 4 nl (nl = 6d, 7s, 7p, 7d, …) Known isotopes :32 (A = 191, 193 – 223) Longest half-life :8.1 hours ( 210 At)
Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Experimental spectrum and energy levels of polonium Config.TermJE (cm -1 )Config.TermJE (cm -1 ) 6p 43P3P20.00[odd] ?° ? p 43P3P p 3 ( 4 S)8s 5 S° ? p 43P3P [odd] ?° ?2 ? p 41D1D p 3 ( 4 S)8s 2 S° ?1 ? p 3 ( 4 S)7s 5 S° p 3 ( 2 D)7S 3 D° ?1 ? p 3 ( 4 S)7s 3 S° p 3 ( 4 S)8p 5 P ? p 41S1S p 3 ( 4 S)8p?1 or p 3 ( 4 S)7p 5 P ?3 ? p 3 ( 4 S)7d° ?2 ? p 3 ( 4 S)7p?? p 3 ( 4 S)8p?1 or p 3 ( 4 S)7p?1 or [odd] ?° ?1 or p 3 ( 4 S)6d 5 D° ? p 3 ( 4 S)9p 5 P ?3 ? p 3 ( 4 S)6d 5 D° ? p 3 ( 4 S)9p?1 or p 3 ( 4 S)6d° ? p 3 ( 4 S)9p ??1 or p 3 ( 4 S)6d° ? p 3 ( 4 S)8d° ?1 or [odd] ?° ? p 3 ( 4 S)8d° ?1 or [odd] ?° ? p 3 ( 4 S)10p ??1 or G.W. Charles, J.O.S.A. 56, 1292 (1966) 97 spectral lines in the region – nm [NIST Atomic Spectra Database (
Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Experimental spectrum and energy levels of polonium Config.TermJE (cm -1 )Config.TermJE (cm -1 ) 6p 43P3P20.00[odd] ?° ? p 43P3P p 3 ( 4 S)8s 5 S° ? p 43P3P [odd] ?° ?2 ? p 41D1D p 3 ( 4 S)8s 2 S° ?1 ? p 3 ( 4 S)7s 5 S° p 3 ( 2 D)7S 3 D° ?1 ? p 3 ( 4 S)7s 3 S° p 3 ( 4 S)8p 5 P ? p 41S1S p 3 ( 4 S)8p?1 or p 3 ( 4 S)7p 5 P ?3 ? p 3 ( 4 S)7d° ?2 ? p 3 ( 4 S)7p?? p 3 ( 4 S)8p?1 or p 3 ( 4 S)7p?1 or [odd] ?° ?1 or p 3 ( 4 S)6d 5 D° ? p 3 ( 4 S)9p 5 P ?3 ? p 3 ( 4 S)6d 5 D° ? p 3 ( 4 S)9p?1 or p 3 ( 4 S)6d° ? p 3 ( 4 S)9p ??1 or p 3 ( 4 S)6d° ? p 3 ( 4 S)8d° ?1 or [odd] ?° ? p 3 ( 4 S)8d° ?1 or [odd] ?° ? p 3 ( 4 S)10p ??1 or G.W. Charles, J.O.S.A. 56, 1292 (1966) 97 spectral lines in the region – nm [NIST Atomic Spectra Database (
Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Experimental spectrum and energy levels of polonium Config.TermJE (cm -1 )Config.TermJE (cm -1 ) 6p 43P3P20.00[odd] ?° ? p 43P3P p 3 ( 4 S)8s 5 S° ? p 43P3P [odd] ?° ?2 ? p 41D1D p 3 ( 4 S)8s 2 S° ?1 ? p 3 ( 4 S)7s 5 S° p 3 ( 2 D)7S 3 D° ?1 ? p 3 ( 4 S)7s 3 S° p 3 ( 4 S)8p 5 P ? p 41S1S p 3 ( 4 S)8p?1 or p 3 ( 4 S)7p 5 P ?3 ? p 3 ( 4 S)7d° ?2 ? p 3 ( 4 S)7p?? p 3 ( 4 S)8p?1 or p 3 ( 4 S)7p?1 or [odd] ?° ?1 or p 3 ( 4 S)6d 5 D° ? p 3 ( 4 S)9p 5 P ?3 ? p 3 ( 4 S)6d 5 D° ? p 3 ( 4 S)9p?1 or p 3 ( 4 S)6d° ? p 3 ( 4 S)9p ??1 or p 3 ( 4 S)6d° ? p 3 ( 4 S)8d° ?1 or [odd] ?° ? p 3 ( 4 S)8d° ?1 or [odd] ?° ? p 3 ( 4 S)10p ??1 or G.W. Charles, J.O.S.A. 56, 1292 (1966) 97 spectral lines in the region – nm [NIST Atomic Spectra Database (
Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Experimental spectrum and energy levels of astatine Config.TermJE (cm -1 ) 6p 52 P°3/20.0 6p 4 ( 3 P)7s 4P4P5/ p 4 ( 3 P)7s 4P4P3/ R. McLaughlin, J.O.S.A. 54, 965 (1964) 2 spectral lines at and nm [NIST Atomic Spectra Database (
Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Theoretical approach Pseudo-relativistic Hartree-Fock (HFR) method (R.D. Cowan, The Theory of Atomic Structure and Spectra, Univ. California Press, Berkeley, 1981) Based on the Schrödinger equation (atom with N electrons) with
Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Theoretical approach Pseudo-relativistic Hartree-Fock (HFR) method (R.D. Cowan, The Theory of Atomic Structure and Spectra, Univ. California Press, Berkeley, 1981) Based on the Schrödinger equation (atom with N electrons) with Central field approximation One-electron wavefunctions
Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Theoretical approach Pseudo-relativistic Hartree-Fock (HFR) method (R.D. Cowan, The Theory of Atomic Structure and Spectra, Univ. California Press, Berkeley, 1981) Based on the Schrödinger equation (atom with N electrons) with Central field approximation One-electron wavefunctions Atomic wavefunctions (Slater determinant)
Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Theoretical approach Pseudo-relativistic Hartree-Fock (HFR) method (R.D. Cowan, The Theory of Atomic Structure and Spectra, Univ. California Press, Berkeley, 1981) Hartree-Fock equations
Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Theoretical approach Pseudo-relativistic Hartree-Fock (HFR) method (R.D. Cowan, The Theory of Atomic Structure and Spectra, Univ. California Press, Berkeley, 1981) Hartree-Fock equations Resolution of Hartree-Fock equations (self-consistent field) Starting P i (r i ) Calculate potentials Solve HF equations New P i (r i ) Same as before ? STOP NO YES
Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Theoretical approach Pseudo-relativistic Hartree-Fock (HFR) method (R.D. Cowan, The Theory of Atomic Structure and Spectra, Univ. California Press, Berkeley, 1981) Multiconfiguration approach (Slater-Condon)
Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Theoretical approach Pseudo-relativistic Hartree-Fock (HFR) method (R.D. Cowan, The Theory of Atomic Structure and Spectra, Univ. California Press, Berkeley, 1981) Multiconfiguration approach (Slater-Condon) Relativistic effects Included perturbationaly (spin-orbit, mass-velocity, Darwin term) Good agreement with fully relativistic methods
Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Theoretical approach Pseudo-relativistic Hartree-Fock (HFR) method (R.D. Cowan, The Theory of Atomic Structure and Spectra, Univ. California Press, Berkeley, 1981) Multiconfiguration approach (Slater-Condon) Relativistic effects Ab initio or semi-empirical approach Included perturbationaly (spin-orbit, mass-velocity, Darwin term) Good agreement with fully relativistic methods Experimental energy levels can be used to optimize the radial parameters (configuration average energies, electrostatic interaction integrals, spin-orbit parameters)
Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Theoretical approach Pseudo-relativistic Hartree-Fock (HFR) method (R.D. Cowan, The Theory of Atomic Structure and Spectra, Univ. California Press, Berkeley, 1981) Multiconfiguration approach (Slater-Condon) Example : Po (6p 4 – 6p 3 6d transitions)
Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Theoretical approach Pseudo-relativistic Hartree-Fock (HFR) method (R.D. Cowan, The Theory of Atomic Structure and Spectra, Univ. California Press, Berkeley, 1981) Multiconfiguration approach (Slater-Condon) Example : Po (6p 4 – 6p 3 6d transitions) Intravalence correlation (single excitations up to n=6, l=3) Even parity 4f 14 5d 10 6s 2 6p 4 4f 14 5d 10 6s 2 6p 3 5f 4f 14 5d 10 6s 2 6p 3 6f 4f 14 5d 10 6s 2 6p 2 6d 2 Odd parity 4f 14 5d 10 6s 2 6p 3 6d 4f 14 5d 10 6s 2 6p 2 6d5f 4f 14 5d 10 6s 2 6p 2 6d6f
Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Theoretical approach Pseudo-relativistic Hartree-Fock (HFR) method (R.D. Cowan, The Theory of Atomic Structure and Spectra, Univ. California Press, Berkeley, 1981) Multiconfiguration approach (Slater-Condon) Example : Po (6p 4 – 6p 3 6d transitions) Intravalence correlation (single excitations up to n=6, l=3) Even parity 4f 14 5d 10 6s 2 6p 4 4f 14 5d 10 6s 2 6p 3 5f 4f 14 5d 10 6s 2 6p 3 6f 4f 14 5d 10 6s 2 6p 2 6d 2 Odd parity 4f 14 5d 10 6s 2 6p 3 6d 4f 14 5d 10 6s 2 6p 2 6d5f 4f 14 5d 10 6s 2 6p 2 6d6f Core-valence correlation (single excitations from 4f, 5d, 6s) Even parity 4f 14 5d 10 6s6p 4 6d 4f 14 5d 10 6s6p 3 6d5f 4f 14 5d 10 6s6p 3 6d6f 4f 14 5d 9 6s 2 6p 4 6d 4f 14 5d 9 6s 2 6p 3 6d5f 4f 14 5d 9 6s 2 6p 3 6d6f 4f 13 5d 10 6s 2 6p 5 4f 13 5d 10 6s 2 6p 4 5f 4f 13 5d 10 6s 2 6p 4 6f 4f 13 5d 10 6s 2 6p 3 6d 2 Odd parity 4f 14 5d 10 6s6p 5 4f 14 5d 10 6s6p 4 5f 4f 14 5d 10 6s6p 4 6f 4f 14 5d 10 6s6p 3 6d 2 4f 14 5d 9 6s 2 6p 5 4f 14 5d 9 6s 2 6p 4 5f 4f 14 5d 9 6s 2 6p 4 6f 4f 14 5d 9 6s 2 6p 3 6d 2 4f 13 5d 10 6s 2 6p 4 6d 4f 13 5d 10 6s 2 6p 3 6d5f 4f 13 5d 10 6s 2 6p 3 6d6f
Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Theoretical approach Pseudo-relativistic Hartree-Fock (HFR) method (R.D. Cowan, The Theory of Atomic Structure and Spectra, Univ. California Press, Berkeley, 1981) Multiconfiguration approach (Slater-Condon) Example : Po (6p 4 – 6p 3 6d transitions) Intravalence correlation (single excitations up to n=6, l=3) Even parity 4f 14 5d 10 6s 2 6p 4 4f 14 5d 10 6s 2 6p 3 5f 4f 14 5d 10 6s 2 6p 3 6f 4f 14 5d 10 6s 2 6p 2 6d 2 Odd parity 4f 14 5d 10 6s 2 6p 3 6d 4f 14 5d 10 6s 2 6p 2 6d5f 4f 14 5d 10 6s 2 6p 2 6d6f Core-valence correlation (single excitations from 4f, 5d, 6s) Even parity 4f 14 5d 10 6s6p 4 6d 4f 14 5d 10 6s6p 3 6d5f 4f 14 5d 10 6s6p 3 6d6f 4f 14 5d 9 6s 2 6p 4 6d 4f 14 5d 9 6s 2 6p 3 6d5f 4f 14 5d 9 6s 2 6p 3 6d6f 4f 13 5d 10 6s 2 6p 5 4f 13 5d 10 6s 2 6p 4 5f 4f 13 5d 10 6s 2 6p 4 6f 4f 13 5d 10 6s 2 6p 3 6d 2 Odd parity 4f 14 5d 10 6s6p 5 4f 14 5d 10 6s6p 4 5f 4f 14 5d 10 6s6p 4 6f 4f 14 5d 10 6s6p 3 6d 2 4f 14 5d 9 6s 2 6p 5 4f 14 5d 9 6s 2 6p 4 5f 4f 14 5d 9 6s 2 6p 4 6f 4f 14 5d 9 6s 2 6p 3 6d 2 4f 13 5d 10 6s 2 6p 4 6d 4f 13 5d 10 6s 2 6p 3 6d5f 4f 13 5d 10 6s 2 6p 3 6d6f 196 states594 states
Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Theoretical approach Pseudo-relativistic Hartree-Fock (HFR) method (R.D. Cowan, The Theory of Atomic Structure and Spectra, Univ. California Press, Berkeley, 1981) Multiconfiguration approach (Slater-Condon) Example : Po (6p 4 – 6p 3 6d transitions) Intravalence correlation (single excitations up to n=6, l=3) Even parity 4f 14 5d 10 6s 2 6p 4 4f 14 5d 10 6s 2 6p 3 5f 4f 14 5d 10 6s 2 6p 3 6f 4f 14 5d 10 6s 2 6p 2 6d 2 Odd parity 4f 14 5d 10 6s 2 6p 3 6d 4f 14 5d 10 6s 2 6p 2 6d5f 4f 14 5d 10 6s 2 6p 2 6d6f Core-valence correlation (single excitations from 4f, 5d, 6s) Even parity 4f 14 5d 10 6s6p 4 6d 4f 14 5d 10 6s6p 3 6d5f 4f 14 5d 10 6s6p 3 6d6f 4f 14 5d 9 6s 2 6p 4 6d 4f 14 5d 9 6s 2 6p 3 6d5f 4f 14 5d 9 6s 2 6p 3 6d6f 4f 13 5d 10 6s 2 6p 5 4f 13 5d 10 6s 2 6p 4 5f 4f 13 5d 10 6s 2 6p 4 6f 4f 13 5d 10 6s 2 6p 3 6d 2 Odd parity 4f 14 5d 10 6s6p 5 4f 14 5d 10 6s6p 4 5f 4f 14 5d 10 6s6p 4 6f 4f 14 5d 10 6s6p 3 6d 2 4f 14 5d 9 6s 2 6p 5 4f 14 5d 9 6s 2 6p 4 5f 4f 14 5d 9 6s 2 6p 4 6f 4f 14 5d 9 6s 2 6p 3 6d 2 4f 13 5d 10 6s 2 6p 4 6d 4f 13 5d 10 6s 2 6p 3 6d5f 4f 13 5d 10 6s 2 6p 3 6d6f states states 196 states594 states
Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Theoretical approach Core-polarization corrections (HFR+CPOL method) (see e.g. Quinet et al., M.N.R.A.S. 307, 934, 1999; Quinet et al., J. Alloys Compd 344, 255, 2002) Core-polarization model potential Intravalence correlation considered within a configuration interaction expansion Core-valence correlation represented by a core-polarization model potential depending on two parameters (dipole polarizability d and cut-off radius r c )
Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Theoretical approach Core-polarization corrections (HFR+CPOL method) (see e.g. Quinet et al., M.N.R.A.S. 307, 934, 1999; Quinet et al., J. Alloys Compd 344, 255, 2002) Core-polarization model potential Corrected dipole radial integral Intravalence correlation considered within a configuration interaction expansion Core-valence correlation represented by a core-polarization model potential depending on two parameters (dipole polarizability d and cut-off radius r c ) replaced by
Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Atomic structure calculations in polonium Journal of Quantitative Spectroscopy and Radiative Transfer 145 (2014)
Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Atomic structure calculations in polonium Model A : 6s 2 6p 4 + 6s 2 6p 3 nl (nl = 7s, 7p, 6d, 7d, 5f, 6f) Model B : Model A + 6s 2 6p 2 nln’l’ Model C : Model B + 6s 2 6pnln’l’n’’l’’ Model D : Model C + 6s6p 4 nl + 6s6p 3 nln’l’ Model E : Model D + 6p 6 + 6p 5 nl + 6p 4 nln’l’ Model F : Model E + [1s 2 … 5d 10 ] core-polarization (Po 6+ core : d = 2.00 a.u., r c = 1.17 a.u.) Pseudo-relativistic Hartree-Fock models considered in the present work Intravalence interactions within 6p 3 nl Single excitations from 6p Double excitations from 6p Single excitations from 6s Double excitations from 6s Core-polarization up to 5d
Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Atomic structure calculations in polonium Model A : 6s 2 6p 4 + 6s 2 6p 3 nl (nl = 7s, 7p, 6d, 7d, 5f, 6f) Model B : Model A + 6s 2 6p 2 nln’l’ Model C : Model B + 6s 2 6pnln’l’n’’l’’ Model D : Model C + 6s6p 4 nl + 6s6p 3 nln’l’ Model E : Model D + 6p 6 + 6p 5 nl + 6p 4 nln’l’ Model F : Model E + [1s 2 … 5d 10 ] core-polarization (Po 6+ core : d = 2.00 a.u., r c = 1.17 a.u.) Pseudo-relativistic Hartree-Fock models considered in the present work
Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Atomic structure calculations in polonium Model A : 6s 2 6p 4 + 6s 2 6p 3 nl (nl = 7s, 7p, 6d, 7d, 5f, 6f) Model B : Model A + 6s 2 6p 2 nln’l’ Model C : Model B + 6s 2 6pnln’l’n’’l’’ Model D : Model C + 6s6p 4 nl + 6s6p 3 nln’l’ Model E : Model D + 6p 6 + 6p 5 nl + 6p 4 nln’l’ Model F : Model E + [1s 2 … 5d 10 ] core-polarization (Po 6+ core : d = 2.00 a.u., r c = 1.17 a.u.) Pseudo-relativistic Hartree-Fock models considered in the present work
Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Atomic structure calculations in polonium Experiment (NIST)Theory (This work) Config.TermJE (cm -1 ) J1 st component2 nd component3 rd component 6p 43P3P % 6p 4 3 P20% 6p 4 1 D 6p 43P3P % 6p 4 3 P43% 6p 4 1 S 6p 43P3P % 6p 4 3 P 6p 41D1D % 6p 4 1 D20% 6p 4 3 P 6p 41S1S % 6p 4 1 S43% 6p 4 3 P 6p 3 ( 4 S)7p 5 P ?3 ? % 6p 3 ( 4 S)7p 5 P16% 6p 3 ( 4 S)7p 3 P15% 6p 3 ( 2 P)7p 3 P 6p 3 ( 4 S)7p?? % 6p 3 ( 4 S)7p 5 P15% 6p 3 ( 2 P)7p 3 D13% 6p 3 ( 2 P)7p 3 P 6p 3 ( 4 S)7p?1 or % 6p 3 ( 4 S)7p 5 P31% 6p 3 ( 2 P)7p 3 D8% 6p 3 ( 2 D)7p 3 F % 6p 3 ( 4 S)7p 3 P19% 6p 3 ( 4 S)7p 5 P16% 6p 3 ( 2 P)7p 3 S % 6p 3 ( 4 S)7p 3 P17% 6p 3 ( 2 P)7p 1 D13% 6p 3 ( 2 P)7p 3 P % 6p 3 ( 4 S)7p 3 P19% 6p 3 ( 2 P)7p 1 S12% 6p 3 ( 2 D)7p 3 P Even-parity energy levels
Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Atomic structure calculations in polonium Experiment (NIST)Theory (This work) Config.TermJE (cm -1 ) J1 st component2 nd component3 rd component 6p 43P3P % 6p 4 3 P20% 6p 4 1 D 6p 43P3P % 6p 4 3 P43% 6p 4 1 S 6p 43P3P % 6p 4 3 P 6p 41D1D % 6p 4 1 D20% 6p 4 3 P 6p 41S1S % 6p 4 1 S43% 6p 4 3 P 6p 3 ( 4 S)7p 5 P ?3 ? % 6p 3 ( 4 S)7p 5 P16% 6p 3 ( 4 S)7p 3 P15% 6p 3 ( 2 P)7p 3 P 6p 3 ( 4 S)7p?? % 6p 3 ( 4 S)7p 5 P15% 6p 3 ( 2 P)7p 3 D13% 6p 3 ( 2 P)7p 3 P 6p 3 ( 4 S)7p?1 or % 6p 3 ( 4 S)7p 5 P31% 6p 3 ( 2 P)7p 3 D8% 6p 3 ( 2 D)7p 3 F % 6p 3 ( 4 S)7p 3 P19% 6p 3 ( 4 S)7p 5 P16% 6p 3 ( 2 P)7p 3 S % 6p 3 ( 4 S)7p 3 P17% 6p 3 ( 2 P)7p 1 D13% 6p 3 ( 2 P)7p 3 P % 6p 3 ( 4 S)7p 3 P19% 6p 3 ( 2 P)7p 1 S12% 6p 3 ( 2 D)7p 3 P Even-parity energy levels
Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Atomic structure calculations in polonium Experiment (NIST)Theory (This work) Config.TermJE (cm -1 ) J1 st component2 nd component3 rd component 6p 43P3P % 6p 4 3 P20% 6p 4 1 D 6p 43P3P % 6p 4 3 P43% 6p 4 1 S 6p 43P3P % 6p 4 3 P 6p 41D1D % 6p 4 1 D20% 6p 4 3 P 6p 41S1S % 6p 4 1 S43% 6p 4 3 P 6p 3 ( 4 S)7p 5 P ?3 ? % 6p 3 ( 4 S)7p 5 P16% 6p 3 ( 4 S)7p 3 P15% 6p 3 ( 2 P)7p 3 P 6p 3 ( 4 S)7p?? % 6p 3 ( 4 S)7p 5 P15% 6p 3 ( 2 P)7p 3 D13% 6p 3 ( 2 P)7p 3 P 6p 3 ( 4 S)7p?1 or % 6p 3 ( 4 S)7p 5 P31% 6p 3 ( 2 P)7p 3 D8% 6p 3 ( 2 D)7p 3 F % 6p 3 ( 4 S)7p 3 P19% 6p 3 ( 4 S)7p 5 P16% 6p 3 ( 2 P)7p 3 S % 6p 3 ( 4 S)7p 3 P17% 6p 3 ( 2 P)7p 1 D13% 6p 3 ( 2 P)7p 3 P % 6p 3 ( 4 S)7p 3 P19% 6p 3 ( 2 P)7p 1 S12% 6p 3 ( 2 D)7p 3 P Even-parity energy levels
Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Atomic structure calculations in polonium Experiment (NIST)Theory (This work) Config.TermJE (cm -1 ) J1 st component2 nd component3 rd component 6p 43P3P % 6p 4 3 P20% 6p 4 1 D 6p 43P3P % 6p 4 3 P43% 6p 4 1 S 6p 43P3P % 6p 4 3 P 6p 41D1D % 6p 4 1 D20% 6p 4 3 P 6p 41S1S % 6p 4 1 S43% 6p 4 3 P 6p 3 ( 4 S)7p 5 P ?3 ? % 6p 3 ( 4 S)7p 5 P16% 6p 3 ( 4 S)7p 3 P15% 6p 3 ( 2 P)7p 3 P 6p 3 ( 4 S)7p?? % 6p 3 ( 4 S)7p 5 P15% 6p 3 ( 2 P)7p 3 D13% 6p 3 ( 2 P)7p 3 P 6p 3 ( 4 S)7p?1 or % 6p 3 ( 4 S)7p 5 P31% 6p 3 ( 2 P)7p 3 D8% 6p 3 ( 2 D)7p 3 F % 6p 3 ( 4 S)7p 3 P19% 6p 3 ( 4 S)7p 5 P16% 6p 3 ( 2 P)7p 3 S % 6p 3 ( 4 S)7p 3 P17% 6p 3 ( 2 P)7p 1 D13% 6p 3 ( 2 P)7p 3 P % 6p 3 ( 4 S)7p 3 P19% 6p 3 ( 2 P)7p 1 S12% 6p 3 ( 2 D)7p 3 P Even-parity energy levels Se4p 3 ( 4 S)5p 5 PJ = Te5p 3 ( 4 S)6p 5 PJ = [Experimental data] J = [Experimental data] J = J = J =
Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Atomic structure calculations in polonium Experiment (NIST)Theory (This work) Config.TermJE (cm -1 ) J1 st component2 nd component3 rd component 6p 3 ( 4 S)7s 5 S° % 6p 3 ( 4 S)7s 5 S32% 6p 3 ( 2 P)7s 3 P9% 6p 3 ( 2 D)7s 3 D 6p 3 ( 4 S)7s 3 S° % 6p 3 ( 4 S)7s 3 S22% 6p 3 ( 2 P)7s 1 P20% 6p 3 ( 2 D)7s 3 D 6p 3 ( 4 S)6d 5 D° ? % 6p 3 ( 4 S)6d 5 D18% 6p 3 ( 4 S)6d 3 D15% 6p 3 ( 2 P)6d 3 D 6p 3 ( 4 S)6d 5 D° ? % 6p 3 ( 4 S)6d 5 D17% 6p 3 ( 2 P)6d 3 D14% 6p 3 ( 2 P)6d 3 F 6p 3 ( 4 S)6d° ? % 6p 3 ( 4 S)6d 5 D17% 6p 3 ( 2 P)6d 3 P12% 6p 3 ( 2 P)6d 3 D % 6p 3 ( 4 S)6d 5 D31% 6p 3 ( 2 P)6d 3 F8% 6p 3 ( 2 D)6d 3 G 6p 3 ( 4 S)6d° ? % 6p 3 ( 4 S)6d 3 D21% 6p 3 ( 4 S)6d 5 D6% 6p 3 ( 2 D)6d 3 P % 6p 3 ( 4 S)6d 5 D30% 6p 3 ( 2 P)6d 3 P7% 6p 3 ( 2 D)6d 3 P % 6p 3 ( 4 S)6d 3 D20% 6p 3 ( 2 P)6d 1 F11% 6p 3 ( 2 D)6d 3 G [odd] ?° ? % 6p 3 ( 4 S)6d 3 D16% 6p 3 ( 2 P)6d 1 P10% 6p 3 ( 2 P)6d 3 P [odd] ?° ?2 ? % 6p 3 ( 2 D)7s 3 D36% 6p 3 ( 4 S)7s 5 S16% 6p 3 ( 2 D)7s 1 D 6p 3 ( 2 D)7S 3 D° ?1 ? % 6p 3 ( 2 D)7s 3 D36% 6p 3 ( 4 S)7s 3 S3% 6p 3 ( 4 S)7d 3 D 6p 3 ( 4 S)7d° ?2 ? % 6p 3 ( 4 S)7d 5 D20% 6p 3 ( 4 S)7d 3 D14% 6p 3 ( 2 P)7d 3 D Odd-parity energy levels
Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Atomic structure calculations in polonium Experiment (NIST)Theory (This work) Config.TermJE (cm -1 ) J1 st component2 nd component3 rd component 6p 3 ( 4 S)7s 5 S° % 6p 3 ( 4 S)7s 5 S32% 6p 3 ( 2 P)7s 3 P9% 6p 3 ( 2 D)7s 3 D 6p 3 ( 4 S)7s 3 S° % 6p 3 ( 4 S)7s 3 S22% 6p 3 ( 2 P)7s 1 P20% 6p 3 ( 2 D)7s 3 D 6p 3 ( 4 S)6d 5 D° ? % 6p 3 ( 4 S)6d 5 D18% 6p 3 ( 4 S)6d 3 D15% 6p 3 ( 2 P)6d 3 D 6p 3 ( 4 S)6d 5 D° ? % 6p 3 ( 4 S)6d 5 D17% 6p 3 ( 2 P)6d 3 D14% 6p 3 ( 2 P)6d 3 F 6p 3 ( 4 S)6d° ? % 6p 3 ( 4 S)6d 5 D17% 6p 3 ( 2 P)6d 3 P12% 6p 3 ( 2 P)6d 3 D % 6p 3 ( 4 S)6d 5 D31% 6p 3 ( 2 P)6d 3 F8% 6p 3 ( 2 D)6d 3 G 6p 3 ( 4 S)6d° ? % 6p 3 ( 4 S)6d 3 D21% 6p 3 ( 4 S)6d 5 D6% 6p 3 ( 2 D)6d 3 P % 6p 3 ( 4 S)6d 5 D30% 6p 3 ( 2 P)6d 3 P7% 6p 3 ( 2 D)6d 3 P % 6p 3 ( 4 S)6d 3 D20% 6p 3 ( 2 P)6d 1 F11% 6p 3 ( 2 D)6d 3 G [odd] ?° ? % 6p 3 ( 4 S)6d 3 D16% 6p 3 ( 2 P)6d 1 P10% 6p 3 ( 2 P)6d 3 P [odd] ?° ?2 ? % 6p 3 ( 2 D)7s 3 D36% 6p 3 ( 4 S)7s 5 S16% 6p 3 ( 2 D)7s 1 D 6p 3 ( 2 D)7S 3 D° ?1 ? % 6p 3 ( 2 D)7s 3 D36% 6p 3 ( 4 S)7s 3 S3% 6p 3 ( 4 S)7d 3 D 6p 3 ( 4 S)7d° ?2 ? % 6p 3 ( 4 S)7d 5 D20% 6p 3 ( 4 S)7d 3 D14% 6p 3 ( 2 P)7d 3 D Odd-parity energy levels
Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Atomic structure calculations in polonium Radiative transitions (transition probabilities and oscillator strengths) E f ik with A ki in s -1, E ki in cm -1, in Å
Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Atomic structure calculations in polonium Model A : 6s 2 6p 4 + 6s 2 6p 3 nl (nl = 7s, 7p, 6d, 7d, 5f, 6f) Model B : Model A + 6s 2 6p 2 nln’l’ Model C : Model B + 6s 2 6pnln’l’n’’l’’ Model D : Model C + 6s6p 4 nl + 6s6p 3 nln’l’ Model E : Model D + 6p 6 + 6p 5 nl + 6p 4 nln’l’ Model F : Model E + [1s 2 … 5d 10 ] core-polarization (Po 6+ core : d = 2.00 a.u., r c = 1.17 a.u.) Radiative transitions (transition probabilities and oscillator strengths)
Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Atomic structure calculations in polonium Radiative transitions Model A : 6s 2 6p 4 + 6s 2 6p 3 nl (nl = 7s, 7p, 6d, 7d, 5f, 6f) Model B : Model A + 6s 2 6p 2 nln’l’ Model C : Model B + 6s 2 6pnln’l’n’’l’’ Model D : Model C + 6s6p 4 nl + 6s6p 3 nln’l’ Model E : Model D + 6p 6 + 6p 5 nl + 6p 4 nln’l’ Model F : Model E + [1s 2 … 5d 10 ] core-polarization (Po 6+ core : d = 2.00 a.u., r c = 1.17 a.u.)
Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Atomic structure calculations in polonium Radiative transitions (oscillator strengths and transition probabilities) (nm) a Lower level (cm -1 ) b Upper level (cm -1 ) b log gfgA (s -1 ) J=2 (even) J=1 (odd) E J=2 (even) J=2 (odd) E J=2 (even) J=1 (odd) E J=2 (even) J=2 (odd) E J=2 (even) J=1 (odd) E J=2 (even) J=3 (odd) E J=0 (even) J=1 (odd) E J=0 (even) J=1 (odd) E J=0 (even) J=1 (odd) E J=1 (even) J=2 (odd) E J=2 (even) J=1 (odd) E J=1 (even) J=1 (odd) E J=1 (even) J=2 (odd) E J=2 (even) J=2 (odd) E J=2 (even) J=2 (odd) E J=1 (even) J=2 (odd) E J=1 (even) J=1 (odd) E J=2 (even) J=1 (odd) E J=1 (even) J=2 (odd) E J=2 (even) J=2 (odd) E J=0 (even) J=1 (odd) E J=2 (even) J=1 (odd) E J=2 (even) J=1 (odd) E J=2 (even) J=3 (odd) E J=1 (even) J=1 (odd) E J=2 (even) J=2 (odd) E J=0 (even) J=1 (odd) E J=2 (odd) J=3 (even) E J=2 (odd) J=2 (even) E J=2 (odd) J=1 (even) E J=1 (odd) J=2 (even) E+7
Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Atomic structure calculations in polonium Comparison with experiment
Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Atomic structure calculations in astatine Up to very recently… R. McLaughlin, J.O.S.A. 54, 965 (1964) Config.TermJE (cm -1 ) 6p 52 P°3/20.0 6p 4 ( 3 P)7s 4P4P5/ p 4 ( 3 P)7s 4P4P3/
Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Atomic structure calculations in astatine S. Rothe et al., Nature Commun. 4, 1835 (2013)S. Raeder et al., Hyperfine Interact. 227, 77 (2014) New experimental analyses (laser spectroscopy – ionization potential)
Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Atomic structure calculations in astatine S. Rothe et al., Nature Commun. 4, 1835 (2013)S. Raeder et al., Hyperfine Interact. 227, 77 (2014) New experimental analyses (laser spectroscopy – ionization potential)
Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Atomic structure calculations in astatine Pseudo-relativistic Hartree-Fock models Model A : 6s 2 6p 5 + 6s 2 6p 4 nl (nl = 7s, 7p, 6d, 7d, 5f, 6f) Model B : Model A + 6s 2 6p 3 nln’l’ Model C : Model B + 6s 2 6p 2 nln’l’n’’l’’ Model D : Model C + 6s6p 5 nl + 6s6p 4 nln’l’ Model E : Model D + 6p 6 nl + 6p 5 nln’l’ Model F : Model E + [1s 2 … 5d 10 ] core-polarization (At 7+ core : d = 1.8 a.u., r c = 1.12 a.u.)
Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Atomic structure calculations in astatine Energy levels within the 6p 4 7p configuration
Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Atomic structure calculations in astatine Energy levels within the 6p 4 7p configuration (J=3/2) (J=7/2) (J=1/2) (J=5/2) (J=3/2) (J=1/2) (J=7/2) (J=5/2) (J=5/2) (J=3/2) Not to scale ! Experiment Theory (Raeder et al. 2014) (This work)
Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Atomic structure calculations in astatine Energy levels within the 6p 4 7p configuration (J=3/2) (J=7/2) (J=1/2) (J=5/2) (J=3/2) (J=1/2) (J=7/2) (J=5/2) (J=5/2) (J=3/2) Not to scale ! Experiment Theory (Raeder et al. 2014) (This work)
Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Atomic structure calculations in astatine Energy levels within the 6p 4 7p configuration (J=3/2) (J=7/2) (J=1/2) (J=5/2) (J=3/2) (J=1/2) (J=7/2) (J=5/2) (J=5/2) (J=3/2) Not to scale ! Experiment Theory (Raeder et al. 2014) (This work) Rothe et al. (2013); Raeder et al. (2014) 6p 4 7s (J=3/2) (J=5/2) 6p 4 7p (J=3/2) (J=7/2) (J=1/2) (J=5/2)
Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Atomic structure calculations in astatine Energy levels within the 6p 4 7p configuration (J=3/2) (J=7/2) (J=1/2) (J=5/2) (J=3/2) (J=1/2) (J=7/2) (J=5/2) (J=5/2) (J=3/2) Not to scale ! Experiment Theory (Raeder et al. 2014) (This work) Rothe et al. (2013); Raeder et al. (2014) 6p 4 7s (J=3/2) (J=5/2) 6p 4 7p (J=3/2) (J=7/2) (J=1/2) (J=5/2)
Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Atomic structure calculations in astatine Energy levels within the 6p 4 7p configuration (J=3/2) (J=7/2) (J=1/2) (J=5/2) (J=3/2) (J=1/2) (J=7/2) (J=5/2) (J=5/2) (J=3/2) Not to scale ! Experiment Theory (Raeder et al. 2014) (This work) Rothe et al. (2013); Raeder et al. (2014) 6p 4 7s (J=3/2) (J=5/2) 6p 4 7p (J=3/2) (J=7/2) (J=1/2) (J=5/2) == 1/2 == 7/2
Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Atomic structure calculations in astatine Energy levels within the 6p 4 7p configuration (J=3/2) (J=7/2) (J=1/2) (J=5/2) (J=3/2) (J=1/2) (J=7/2) (J=5/2) (J=5/2) (J=3/2) Not to scale ! Experiment Theory (Raeder et al. 2014) (This work) Rothe et al. (2013); Raeder et al. (2014) 6p 4 7s (J=3/2) (J=5/2) 6p 4 7p (J=3/2) (J=7/2) (J=1/2) (J=5/2) == 1/2 == 7/2
Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Atomic structure calculations in astatine Classification of experimentally observed energy levels E(cm -1 )J1 st component2 nd component3 rd component 0.00(odd)3/298% 6p 5 2 P (even)5/278% 6p 4 ( 3 P)7s 4 P20% 6p 4 ( 1 D)7s 2 D (even)3/260% 6p 4 ( 3 P)7s 2 P23% 6p 4 ( 1 D)7s 2 D15% 6p 4 ( 3 P)7s 4 P (odd)5/243% 6p 4 ( 3 P)7p 2 D35% 6p 4 ( 3 P)7p 4 P11% 6p 4 ( 1 D)7p 2 D (odd)7/277% 6p 4 ( 3 P)7p 4 D22% 6p 4 ( 1 D)7p 2 F (odd)1/237% 6p 4 ( 3 P)7p 2 S24% 6p 4 ( 1 D)7p 2 P24% 6p 4 ( 3 P)7p 2 P (odd)3/242% 6p 4 ( 3 P)7p 2 P21% 6p 4 ( 3 P)7p 4 S12% 6p 4 ( 1 D)7p 2 D
Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Atomic structure calculations in astatine Classification of experimentally observed energy levels E(cm -1 )J1 st component2 nd component3 rd component 0.00(odd)3/298% 6p 5 2 P (even)5/278% 6p 4 ( 3 P)7s 4 P20% 6p 4 ( 1 D)7s 2 D (even)3/260% 6p 4 ( 3 P)7s 2 P23% 6p 4 ( 1 D)7s 2 D15% 6p 4 ( 3 P)7s 4 P (odd)5/243% 6p 4 ( 3 P)7p 2 D35% 6p 4 ( 3 P)7p 4 P11% 6p 4 ( 1 D)7p 2 D (odd)7/277% 6p 4 ( 3 P)7p 4 D22% 6p 4 ( 1 D)7p 2 F (odd)1/237% 6p 4 ( 3 P)7p 2 S24% 6p 4 ( 1 D)7p 2 P24% 6p 4 ( 3 P)7p 2 P (odd)3/242% 6p 4 ( 3 P)7p 2 P21% 6p 4 ( 3 P)7p 4 S12% 6p 4 ( 1 D)7p 2 D
Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Atomic structure calculations in astatine (nm) Lower level (cm -1 )Upper level (cm -1 )log gfgA (s -1 ) J=3/2 (odd) J=3/2 (even) E J=3/2 (odd) J=5/2 (even) E J=5/2 (even) J=3/2 (odd) E J=5/2 (even) J=7/2 (odd) E J=5/2 (even) J=5/2 (odd) E J=3/2 (even) J=3/2 (odd) E J=3/2 (even) J=1/2 (odd) E J=3/2 (even) J=5/2 (odd) E+7 Radiative transitions (oscillator strengths, transition probabilities)
Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Atomic structure calculations in astatine Identification of new high lying odd-parity energy levels S. Raeder et al., Hyperfine Interact. 227, 77 (2014) Odd-parity levels cm cm cm cm -1 6p 4 np
Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Atomic structure calculations in astatine Identification of new high lying odd-parity energy levels S. Raeder et al., Hyperfine Interact. 227, 77 (2014) Odd-parity levels cm cm cm cm -1 6p 4 np 6p 4 14p 6p 4 13p 6p 4 12p 6p 4 11p 6p 4 10p 6p 4 9p 6p 4 8p 6p 4 7p Theory Experiment
Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Atomic structure calculations in astatine Identification of new high lying odd-parity energy levels E(cm -1 )J1 st component2 nd component3 rd component (odd)5/241% 6p 4 ( 3 P)9p 2 D36% 6p 4 ( 3 P)9p 4 P14% 6p 4 ( 3 P)9p 2 D (odd)3/243% 6p 4 ( 3 P)9p 2 P20% 6p 4 ( 3 P)9p 4 S12% 6p 4 ( 1 D)9p 2 D (odd)5/241% 6p 4 ( 3 P)10p 2 D36% 6p 4 ( 3 P)10p 4 P14% 6p 4 ( 3 P)10p 2 D (odd)3/243% 6p 4 ( 3 P)10p 2 P20% 6p 4 ( 3 P)10p 4 S12% 6p 4 ( 1 D)10p 2 D
Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Atomic structure calculations in astatine Identification of new high lying odd-parity energy levels E(cm -1 )J1 st component2 nd component3 rd component (odd)5/241% 6p 4 ( 3 P)9p 2 D36% 6p 4 ( 3 P)9p 4 P14% 6p 4 ( 3 P)9p 2 D (odd)3/243% 6p 4 ( 3 P)9p 2 P20% 6p 4 ( 3 P)9p 4 S12% 6p 4 ( 1 D)9p 2 D (odd)5/241% 6p 4 ( 3 P)10p 2 D36% 6p 4 ( 3 P)10p 4 P14% 6p 4 ( 3 P)10p 2 D (odd)3/243% 6p 4 ( 3 P)10p 2 P20% 6p 4 ( 3 P)10p 4 S12% 6p 4 ( 1 D)10p 2 D E ion = cm -1 R At = cm -1 (A = 210) Quantum defect
Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Atomic structure calculations in astatine Estimated energy level values in the 6p 4 ( 3 P)np Rydberg series Config.Level Estim. (cm -1 )Obs. (cm -1 )Config.Level Estim. (cm -1 )Obs. (cm -1 ) 6p 4 ( 3 P)8p 2 D 5/ p 4 ( 3 P)19p 2 D 5/ P 3/ P 3/ p 4 ( 3 P)9p 2 D 5/ p 4 ( 3 P)20p 2 D 5/ P 3/ P 3/ p 4 ( 3 P)10p 2 D 5/ p 4 ( 3 P)21p 2 D 5/ P 3/ P 3/ p 4 ( 3 P)11p 2 D 5/ p 4 ( 3 P)22p 2 D 5/ P 3/ P 3/ p 4 ( 3 P)12p 2 D 5/ p 4 ( 3 P)23p 2 D 5/ P 3/ P 3/ p 4 ( 3 P)13p 2 D 5/ p 4 ( 3 P)24p 2 D 5/ P 3/ P 3/ p 4 ( 3 P)14p 2 D 5/ p 4 ( 3 P)25p 2 D 5/ P 3/ P 3/ p 4 ( 3 P)15p 2 D 5/ p 4 ( 3 P)26p 2 D 5/ P 3/ P 3/ p 4 ( 3 P)16p 2 D 5/ p 4 ( 3 P)27p 2 D 5/ P 3/ P 3/ p 4 ( 3 P)17p 2 D 5/ p 4 ( 3 P)28p 2 D 5/ P 3/ P 3/ p 4 ( 3 P)18p 2 D 5/ p 4 ( 3 P)29p 2 D 5/ P 3/ P 3/
Université de Liège Pascal Quinet | BriX Workshop, Liège, 27 – 28 May 2015 Summary and conclusions Theoretical investigation of polonium and astatine atomic structures Pseudo-relativistic Hartree-Fock method Polonium : - Spectroscopic designation of 6p 3 7p, 6p 3 6d, 6p 3 7s and 6p 3 7d energy levels - Radiative transition parameters for 31 spectral lines in the wavelength region 175 – 987 nm Astatine : - Spectroscopic designation of 4 levels belonging to 6p 4 7p - Radiative transition parameters for 8 spectral lines in the wavelength region 216 – 915 nm - Identification of 4 new levels in 6p 4 9p and 6p 4 10p configurations - Predicted energies for levels within the 6p 4 np Rydberg series
Thank you for your attention