Leo Lam © 2010-2011 Signals and Systems EE235. Leo Lam © 2010-2011 Surgery Five surgeons were taking a coffee break and were discussing their work. The.

Slides:



Advertisements
Similar presentations
Leo Lam © Signals and Systems EE235 October 14 th Friday Online version.
Advertisements

Leo Lam © Signals and Systems EE235. Transformers Leo Lam ©
Leo Lam © Signals and Systems EE235. Fourier Transform: Leo Lam © Fourier Formulas: Inverse Fourier Transform: Fourier Transform:
Lecture 5: Linear Systems and Convolution
Time-Domain System Analysis M. J. Roberts - All Rights Reserved. Edited by Dr. Robert Akl 1.
Leo Lam © Signals and Systems EE235. Leo Lam © Fourier Transform Q: What did the Fourier transform of the arbitrary signal say to.
Leo Lam © Signals and Systems EE235 Lecture 27.
Leo Lam © Signals and Systems EE235 Leo Lam © Today’s menu Exponential response of LTI system LCCDE Midterm Tuesday next week.
Leo Lam © Signals and Systems EE235. Leo Lam © Today’s menu Homework 2 due now Convolution!
Leo Lam © Signals and Systems EE235. Leo Lam © Convergence Two mathematicians are studying a convergent series. The first one says:
Leo Lam © Signals and Systems EE235. So stable Leo Lam ©
Leo Lam © Signals and Systems EE235. Leo Lam © Arthur’s knights Who was the largest knight at King Arthur’s round table? Sir Cumfrence,
Leo Lam © Signals and Systems EE235 Today’s Cultural Education: Liszt: Von der Wiege bis zum Grabe, Symphonic Poem No. 13.
Leo Lam © Signals and Systems EE235 Leo Lam.
Leo Lam © Signals and Systems EE235. Leo Lam © x squared equals 9 x squared plus 1 equals y Find value of y.
Leo Lam © Signals and Systems EE235. Leo Lam © Fourier Transform Q: What did the Fourier transform of the arbitrary signal say to.
EE104: Lecture 9 Outline Announcements HW 2 due today, HW 3 posted Midterm scheduled for 2/12, may move to 2/14. Review of Last Lecture Signal Bandwidth.
Leo Lam © Signals and Systems EE235. Leo Lam © Merry Christmas! Q: What is Quayle-o-phobia? A: The fear of the exponential (e).
Leo Lam © Signals and Systems EE235 Lecture 14.
Leo Lam © Signals and Systems EE235. Leo Lam © Today’s menu Good weekend? System properties –Time Invariance –Linearity –Superposition!
ENGR 4196 – Senior Design I Question: Which is more important – the project title or abstract? Objectives: Abstract Revision Exercise Project Title The.
Leo Lam © Signals and Systems EE235 Lecture 18.
The Convolution Integral
Time-Domain Representations of LTI Systems
Leo Lam © Signals and Systems EE235 Lecture 21.
Leo Lam © Signals and Systems EE235. Leo Lam © Pet Q: Has the biomedical imaging engineer done anything useful lately? A: No, he's.
ECE 8443 – Pattern Recognition EE 3512 – Signals: Continuous and Discrete Objectives: Convolution Definition Graphical Convolution Examples Properties.
Signal and Systems Prof. H. Sameti Chapter #2: 1) Representation of DT signals in terms of shifted unit samples System properties and examples 2) Convolution.
Leo Lam © Signals and Systems EE235. Summary: Convolution Leo Lam © Draw x() 2.Draw h() 3.Flip h() to get h(-) 4.Shift forward.
Continuous-Time Convolution Impulse Response Impulse response of a system is response of the system to an input that is a unit impulse (i.e., a.
Leo Lam © Signals and Systems EE235. Leo Lam © Stanford The Stanford Linear Accelerator Center was known as SLAC, until the big earthquake,
Leo Lam © Signals and Systems EE235 Lecture 20.
Leo Lam © Signals and Systems EE235 Leo Lam.
Leo Lam © Signals and Systems EE235 Lecture 21.
Leo Lam © Signals and Systems EE235 Lecture 22.
Leo Lam © Signals and Systems EE235 Lecture 25.
© Copyright _ Bro’s Place 2003 Anderson Cooper’s (CNN) father is Wyatt Cooper, actor-writer from Mississippi and his mother is Gloria Vanderbilt Anderson.
Leo Lam © Signals and Systems EE235 Leo Lam.
Leo Lam © Signals and Systems EE235. Leo Lam © Surgery Five surgeons were taking a coffee break and were discussing their work. The.
Leo Lam © Signals and Systems EE235 Leo Lam © Working with computers.
Leo Lam © Signals and Systems EE235 KX5BQY.
Leo Lam © Signals and Systems EE235 Leo Lam.
1 LTI Systems; Convolution September 4, 2000 EE 64, Section 1 ©Michael R. Gustafson II Pratt School of Engineering.
Leo Lam © Signals and Systems EE235 Lecture 25.
1 Computing the output response of LTI Systems. By breaking or decomposing and representing the input signal to the LTI system into terms of a linear combination.
Leo Lam © Signals and Systems EE235. Leo Lam © Today’s menu LTI System – Impulse response Lead in to Convolution.
Leo Lam © Signals and Systems EE235 Lecture 26.
EE 309 Signal and Linear System Analysis
Signals and Systems EE235 Leo Lam ©
Signals and Systems EE235 Lecture 26 Leo Lam ©
Signals and Systems EE235 Leo Lam ©
Signals and Systems EE235 Lecture 13 Leo Lam ©
Signals and Systems EE235 Leo Lam ©
Signals and Systems EE235 Leo Lam ©
Signals and Systems EE235 Leo Lam Leo Lam ©
Signals and Systems EE235 Leo Lam ©
Signals and Systems EE235 Leo Lam Leo Lam ©
Signals and Systems EE235 Leo Lam Leo Lam ©
Signals and Systems EE235 Leo Lam Leo Lam ©
Signals and Systems EE235 Lecture 14 Leo Lam ©
Signals and Systems EE235 Leo Lam Leo Lam ©
Signals and Systems EE235 Leo Lam ©
Signals and Systems EE235 Lecture 23 Leo Lam ©
Signals and Systems EE235 Leo Lam Leo Lam ©
Signals and Systems EE235 Leo Lam ©
Signals and Systems EE235 Leo Lam ©
Signals and Systems EE235 Lecture 14 Leo Lam ©
Signals and Systems EE235 Leo Lam ©
Signals and Systems EE235 Leo Lam Leo Lam ©
Convolution sum & Integral
Presentation transcript:

Leo Lam © Signals and Systems EE235

Leo Lam © Surgery Five surgeons were taking a coffee break and were discussing their work. The first said, "I think accountants are the easiest to operate on. You open them up and everything inside is numbered.“ The second said, "I think librarians are the easiest to operate on. You open them up and everything inside is in alphabetical order.“ The third said, "I like to operate on electricians. You open them up and everything inside is color-coded.“ The fourth one said, "I like to operate on lawyers. They're heartless, spineless, gutless, and their heads and their butts are interchangeable." Fifth surgeon said, "I like Engineers...they always understand when you have a few parts left over at the end..."

Leo Lam © Today’s menu Lab 3 this week (posted) Homework 2 due tomorrow Homework 1 issues Convolution

Convolution Integral Leo Lam © Standard Notation The output of a system is its input convolved with its impulse response

Quick recap Leo Lam © x(t) is the sum of the weighted shifted impulses

Convolution integral Leo Lam © Function of  =h(- (-t)) Function of  shifted by t , not t

Convolution integral Leo Lam © Two ways to evaluate: –Mathematically –Graphically For graphical convolution, see demo in Riskin interactive notes (lesson 6, lesson 7)

Convolution (mathematically) Leo Lam © Use sampling property of delta: Evaluate integral to arrive at output signal: Does this make sense physically?