Discrete Probability Distributions Chapter 06 McGraw-Hill/Irwin Copyright © 2013 by The McGraw-Hill Companies, Inc. All rights reserved.

Slides:



Advertisements
Similar presentations
BUS 220: ELEMENTARY STATISTICS
Advertisements

BUS 220: ELEMENTARY STATISTICS Chapter 6: Discrete Probability Distribution.
IT College Introduction to Computer Statistical Packages
Chapter Three McGraw-Hill/Irwin © 2005 The McGraw-Hill Companies, Inc., All Rights Reserved
Random Variables and Probability Distributions
Chapter 7 Special Discrete Distributions. Binomial Distribution B(n,p) Each trial results in one of two mutually exclusive outcomes. (success/failure)
Discrete Probability Distributions Chapter 6 Copyright © 2011 by the McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin.
Longwood University 201 High Street Farmville, VA 23901
Probabilistic and Statistical Techniques
Chapter 3 Probability Distribution. Chapter 3, Part A Probability Distributions n Random Variables n Discrete Probability Distributions n Binomial Probability.
1 1 Slide © 2013 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
Probability Distributions
Ka-fu Wong © 2003 Chap 6- 1 Dr. Ka-fu Wong ECON1003 Analysis of Economic Data.
Ka-fu Wong © 2003 Chap 4- 1 Dr. Ka-fu Wong ECON1003 Analysis of Economic Data.
QBM117 Business Statistics
McGraw-Hill/Irwin Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved. Discrete Probability Distributions Chapter 6.
© 2012 McGraw-Hill Ryerson Limited1 © 2009 McGraw-Hill Ryerson Limited.
Statistics Alan D. Smith.
Irwin/McGraw-Hill © The McGraw-Hill Companies, Inc., 2000 LIND MASON MARCHAL 1-1 Chapter Five Discrete Probability Distributions GOALS When you have completed.
Describing Data: Numerical Measures
1 Chapter 6 Discrete Probability Distributions 2 Goals 1.Define the terms: Probability distribution Random variable Continuous probability distributions.
McGraw-Hill/IrwinCopyright © 2009 by The McGraw-Hill Companies, Inc. All Rights Reserved. Chapter 4 and 5 Probability and Discrete Random Variables.
McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies, Inc. All rights reserved. Discrete Random Variables Chapter 4.
6- 1 Chapter Six McGraw-Hill/Irwin © 2005 The McGraw-Hill Companies, Inc., All Rights Reserved.
Discrete Probability Distributions Chapter 6 McGraw-Hill/Irwin Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved.
©The McGraw-Hill Companies, Inc. 2008McGraw-Hill/Irwin Probability Distributions Chapter 6.
©The McGraw-Hill Companies, Inc. 2008McGraw-Hill/Irwin Probability Distributions Chapter 6.
©The McGraw-Hill Companies, Inc. 2008McGraw-Hill/Irwin Probability Distributions Chapter 6.
Discrete Probability Distributions Chapter 6 McGraw-Hill/Irwin Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved.
 A probability function is a function which assigns probabilities to the values of a random variable.  Individual probability values may be denoted by.
Probabilistic and Statistical Techniques 1 Lecture 19 Eng. Ismail Zakaria El Daour 2010.
Bennie D Waller, Longwood University Probability.
7- 1 Chapter Seven McGraw-Hill/Irwin © 2005 The McGraw-Hill Companies, Inc., All Rights Reserved.
1 1 Slide © 2009 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
Managerial Decision Making Facilitator: René Cintrón MBA / 510.
 A probability function is a function which assigns probabilities to the values of a random variable.  Individual probability values may be denoted by.
Discrete Probability Distributions
Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin Chapter 5 Discrete Random Variables.
Discrete Probability Distributions Chapter 06 McGraw-Hill/Irwin Copyright © 2013 by The McGraw-Hill Companies, Inc. All rights reserved.
Discrete Probability Distributions. What is a Probability Distribution? Experiment: Toss a coin three times. Observe the number of heads. The possible.
Chapter Three McGraw-Hill/Irwin © 2005 The McGraw-Hill Companies, Inc., All Rights Reserved
Discrete Probability Distributions Define the terms probability distribution and random variable. 2. Distinguish between discrete and continuous.
Discrete Probability Distributions Define the terms probability distribution and random variable. 2. Distinguish between discrete and continuous.
Definition A random variable is a variable whose value is determined by the outcome of a random experiment/chance situation.
Copyright (C) 2002 Houghton Mifflin Company. All rights reserved. 1 Understandable Statistics Seventh Edition By Brase and Brase Prepared by: Mistah Flynn.
PROBABILITY DISTRIBUTIONS Probability distributions → A listing of all the outcomes of an experiment and the probability assosiated with each outcome,
Module 5: Discrete Distributions
What Is Probability Distribution?Ir. Muhril A., M.Sc., Ph.D.1 Chapter 6. Discrete Probability Distributions.
Chapter 7 Special Discrete Distributions. Binomial Distribution B(n,p) Each trial results in one of two mutually exclusive outcomes. (success/failure)
Copyright © 2011 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin Chapter 5 Discrete Random Variables.
Chapter Three McGraw-Hill/Irwin © 2006 The McGraw-Hill Companies, Inc., All Rights Reserved.
 A probability function - function when probability values are assigned to all possible numerical values of a random variable (X).  Individual probability.
Copyright (C) 2002 Houghton Mifflin Company. All rights reserved. 1 Understandable Statistics Seventh Edition By Brase and Brase Prepared by: Lynn Smith.
©The McGraw-Hill Companies, Inc. 2008McGraw-Hill/Irwin Probability Distributions Chapter 6.
Probability Distributions
Chapter Five The Binomial Probability Distribution and Related Topics
Discrete Probability Distributions
Chapter Six McGraw-Hill/Irwin
Discrete Random Variables
Chapter 5 Created by Bethany Stubbe and Stephan Kogitz.
Discrete Probability Distributions
Special Discrete Distributions
Probability Distributions
Probability Distributions
Discrete Probability Distributions
Probability Distributions
BUS511: Business Statistics
Probability distributions
Probability Distributions
Special Discrete Distributions
Presentation transcript:

Discrete Probability Distributions Chapter 06 McGraw-Hill/Irwin Copyright © 2013 by The McGraw-Hill Companies, Inc. All rights reserved.

LEARNING OBJECTIVES LO 6-1 Identify the characteristics of a probability distribution. LO 6-2 Distinguish between a discrete and a continuous random variable. LO 6-3 Compute the mean of a probability distribution. LO 6-4 Compute the variance and standard deviation of a probability distribution. LO 6-5 Describe and compute probabilities for a binomial distribution. LO 6-6 Describe and compute probabilities for a Poisson distribution. 6-2

What is a Probability Distribution? PROBABILITY DISTRIBUTION A listing of all the outcomes of an experiment and the probability associated with each outcome. CHARACTERISTICS OF A PROBABILITY DISTRIBUTION 1.The probability of a particular outcome is between 0 and 1 inclusive. 2.The outcomes are mutually exclusive events. 3.The list is exhaustive. So the sum of the probabilities of the various events is equal to 1. LO 6-1 Identify the characteristics of a probability distribution. 6-3

What is a Probability Distribution? 4 Experiment: Toss a coin three times. Observe the number of heads. The possible results are: Zero heads, One head, Two heads, and Three heads. What is the probability distribution for the number of heads? LO

Random Variables EXAMPLES 1. The number of students in a class. 2. The number of children in a family. 3. The number of cars entering a carwash in a hour. 4. Number of home mortgages approved by Coastal Federal Bank last week. RANDOM VARIABLE A quantity resulting from an experiment that, by chance, can assume different values. DISCRETE RANDOM VARIABLE A random variable that can assume only certain clearly separated values. It is usually the result of counting something. EXAMPLES 1. The length of each song on the latest Tim McGraw album. 2. The weight of each student in this class. 3. The temperature outside as you are reading this book. 4. The amount of money earned by each of the more than 750 players currently on Major League Baseball team rosters. CONTINUOUS RANDOM VARIABLE Can assume an infinite number of values within a given range. It is usually the result of some type of measurement. LO 6-2 Distinguish between discrete and continuous random variable. 6-5

The Mean and Variance of a Discrete Probability Distribution MEAN The mean is a typical value used to represent the central location of a probability distribution. The mean of a probability distribution is also referred to as its expected value. VARIANCE AND STANDARD DEVIATION Measures the amount of spread in a distribution The computational steps are: 1. Subtract the mean from each value, and square this difference. 2. Multiply each squared difference by its probability. 3. Sum the resulting products to arrive at the variance. The standard deviation is found by taking the positive square root of the variance. LO 6-3 and LO 6-4 Compute the mean, standard deviation and variance of a probability distribution. 6-6

Mean, Variance, and Standard Deviation of a Probability Distribution – Example MEAN LO 6-3, LO 6-4 John Ragsdale sells new cars for Pelican Ford. John usually sells the largest number of cars on Saturday. He has developed the following probability distribution for the number of cars he expects to sell on a particular Saturday. 6-7

Mean, Variance, and Standard Deviation of a Probability Distribution – Example John Ragsdale sells new cars for Pelican Ford. John usually sells the largest number of cars on Saturday. He has developed the following probability distribution for the number of cars he expects to sell on a particular Saturday. VARIANCE STANDARD DEVIATION LO 6-3, LO

Binomial Probability Distribution  A Widely occurring discrete probability distribution  Characteristics of a Binomial Probability Distribution 1. There are only two possible outcomes on a particular trial of an experiment. 2. The outcomes are mutually exclusive. 3. The random variable is the result of counts. 4. Each trial is independent of any other trial. LO 6-5 Describe and compute probabilities for a binomial distribution. 6-9

Binomial Probability Distribution EXAMPLE There are five flights daily from Pittsburgh via US Airways into the Bradford, Pennsylvania, Regional Airport. Suppose the probability that any flight arrives late is.20. What is the probability that none of the flights are late today? What is the average number of late flights? What is the variance of the number of late flights? LO

Binomial Distribution – Example EXAMPLE Five percent of the worm gears produced by an automatic, high-speed Carter-Bell milling machine are defective. What is the probability that out of six gears selected at random none will be defective? Exactly one? Exactly two? Exactly three? Exactly four? Exactly five? Exactly six out of six? Binomial – Shapes for Varying  (n constant) Binomial – Shapes for Varying n (  constant) LO

Cumulative Binomial Probability Distributions - Example EXAMPLE A study by the Illinois Department of Transportation concluded that 76.2 percent of front seat occupants used seat belts. A sample of 12 vehicles is selected. What is the probability the front seat occupants in exactly 7 of the 12 vehicles are wearing seat belts? What is the probability the front seat occupants in at least 7 of the 12 vehicles are wearing seat belts? LO

Poisson Probability Distribution The Poisson probability distribution describes the number of times some event occurs during a specified interval. The interval may be time, distance, area, or volume. Assumptions of the Poisson Distribution (1) The probability is proportional to the length of the interval. (2) The intervals are independent. Examples include: The number of misspelled words per page in a newspaper. The number of calls per hour received by Dyson Vacuum Cleaner Company. The number of vehicles sold per day at Hyatt Buick GMC in Durham, North Carolina. The number of goals scored in a college soccer game. LO 6-6 Describe and compute probabilities for a Poisson distribution. 6-13

Poisson Probability Distribution - Example EXAMPLE Assume baggage is rarely lost by Northwest Airlines. Suppose a random sample of 1,000 flights shows a total of 300 bags were lost. Thus, the arithmetic mean number of lost bags per flight is 0.3 (300/1,000). If the number of lost bags per flight follows a Poisson distribution with u = 0.3, find the probability of not losing any bags. Use Appendix B.5 to find the probability that no bags will be lost on a particular flight. What is the probability exactly one bag will be lost on a particular flight? LO

More About the Poisson Probability Distribution The Poisson probability distribution is always positively skewed and the random variable has no specific upper limit. The Poisson distribution for the lost bags illustration, where µ=0.3, is highly skewed. As µ becomes larger, the Poisson distribution becomes more symmetrical. LO