Local tests of spatial variation of m e /m p S. A. Levshakov Department of Theoretical Astrophysics Physical-Technical Institute, St. Petersburg Department of Theoretical Astrophysics Physical-Technical Institute, St. Petersburg, 201 JINR, Dec 1-5, 2014
Einstein equivalence principle local Lorentz invariance (LLI) changing α can be associated with a violation of LLI (Kostelecky et al. 2003) LPI : the outcome of any local non-gravitational experiment is independent of where and when it is performed, i.e., that the fundamental physical laws are space-time invariant Low energies l ocal position invariance (LPI) μ = m e /m p
ΔV= ΔV +ΔV+ΔV Δμ/μ = (V rot – V inv )/(ΔQ c) = ΔV/(ΔQ c) ΔV = 0 ΔV=ΔV + ΔV μ n n μ (= signal + Doppler noise + systematics) s s comparison of inversion (|Q| > 1) and rotational (Q=1) transitions Measurements Effelsberg 100-m telescope
~ km/s 0.15 km/s ~ km/s Line position uncertainty Line width 0.2 km/s Medicina 32-m telescope
Time series instability of δV ~ 10 m/s detected XFFTS (eXtended FFTS) Effelsberg New spectrometer: PSW 150 sec/point 30 min/scan (ON+OFF) Exposure time: Systematics ~ 1/4th Δ ch
Effelsberg observations NH 3 HC 3 N HC 5 N HC 7 N ΔV=V – V rotinv Δμ/μ < =3±6 m/s recent estimate Levshakov et al formal weighted mean: (3σ C.L.) (1σ C.L.)
precision of lab frequencies: N 2 H + (1-0) 93.2 GHz ε = 14 m/s HC 3 N (2-1) 18.2 GHz ε = 2.8 m/s NH 3 (1,1) 23.7 GHz ε = 0.6 m/s uncertainty in V LSR of 1 m/s limit on Δμ/μ ~ ammonia method (ΔQ=3.5) rotational transitions inversion transition NH 3 ( ) GHz ε = 0.3 m/s rotational transition (if based on NH 3 only ! )
J K = GHz, i.e. in B9 ALMA band GHz How to improve current Δμ/μ estimates ? rotational transition of para-NH 3 z = 0.89 para- vs ortho-NH 3 !
Persson et al Different absorption patterns ! Herschel/HIFI observations of para- and ortho-NH 3 rotational transitions star-forming region G (W31C) V LSR robust approach – to use para-NH 3 only
Estimate of Δμ/μ for local sources (MW): Δμ/μ =σ V /(ΔQ c) if linewidth ΔV ~ 0.2 km/s ( like in L1498 ), σ V ~ km/s, S/N ~ 30 then σ V = 0.69(S/N) -1 ( ΔV Δ ch ) 1/2 gives Δ ch ~ 0.01 km/s and Δμ/μ ~ Δ ch ~ 1 kHz at 23.7 GHz Δ ch ~ 40 kHz at 1215 GHz but requires space observations at 1215 GHz
Mangum et al z = z = z = z = z = LINER-type AGN Seyfert possible QSO Seyfert, ULIRG HFLS3 Extragalactic NH 3 absorption was observed: NGC 660 NGC 3079 IC 860 IR Arp 220 if z > 1thenground-based telescopes can be used for σ V ~ 0.1 km/s, S/N ~ 30, and ΔV ~ 20 km/s ( like in PKS ) Δμ/μ ~ (based on NH 3 only ) z = 6.34 Dusty star-forming galaxy, DSFG Riechers et al. 2013
Hydronium H 3 O + frequencies are in GHz GHz GHz GHz o-H 3 O + p-H 3 O + Q Kozlov & Levshakov 2011 Kozlov, Porsev, Reimers 2011 p-H 3 O + : ΔQ = Q 307 – Q 364 = 9.9 three times ΔQ ammonia
H 3 O + observations (star-forming regions, MW) CSO 10.4-m telescope (Phillips et al. 1992) also detected towards Orion-KL, W51M, W3 IRS5 linewidth ΔV = 3.5 km/s G
H 3 O + observations (star-forming regions, MW) Orion-KL APEX 12-m telescopeMay, 2011Molaro et al. (unpublished) 307 GHz
H 3 O + observations (star-forming regions, MW) Infrared Space Observatory (ISO) Sagittarius B2 (~ 120 pc from the Galactic Center ) 364 GHz 1632 GHz 1655 GHz p- H 3 O + Palehampton et al line position uncertainties ~ 5 km/s ΔQ = Q 1632 – Q 364 = =5.5 Δμ/μ <
JCMT 15-m telescope H 3 O + observations (extragalactic) 364 GHz transition M82 Arp 220 van der Tak et al if 364, 307 GHz line position uncertainties ~ 1 km/s then Δμ/μ ~ local starburst
Lab frequencies: ε ~ 1 m/s GHz ε ~ 1 m/s GHz ε ~ 10 m/s (unresolved hfs components) with ε ~ 10 m/s limit on Δμ/μ ~ (para-hydronium only) p-H 3 O +
Conclusion High precision line position measurements Δμ/μ ~ ( p-H 3 O + ) ~ 0.01 km/s (Galactic molecular clouds) ~ 1 km/s (extragalactic molecular clouds) provide with ALMA facilities ~ (p-NH 3 ) Galactic Δμ/μ ~ ( p- H 3 O + ) ~ (p-NH 3 ) extragalactic Atacama Large Millimeter Array (ALMA) mm