November 2003ECFA-Montpellier 1 Status on CMOS sensors Auguste Besson on behalf of IRES/LEPSI: M. Deveaux, A. Gay, G. Gaycken, Y. Gornushkin, D. Grandjean,

Slides:



Advertisements
Similar presentations
1 Research & Development on SOI Pixel Detector H. Niemiec, T. Klatka, M. Koziel, W. Kucewicz, S. Kuta, W. Machowski, M. Sapor, M. Szelezniak AGH – University.
Advertisements

M. Szelezniak1PXL Sensor and RDO review – 06/23/2010 STAR PXL Sensors Overview.
Development of an Active Pixel Sensor Vertex Detector H. Matis, F. Bieser, G. Rai, F. Retiere, S. Wurzel, H. Wieman, E. Yamamato, LBNL S. Kleinfelder,
6 th International Conference on Position Sensitive Detectors, Leicester 11/09/2002 Yu.Gornushkin Outline: G. Claus, C.
For the RD42 Collaboration
Charged Particle Tracker for a RHIC/EIC joint detector Detector layouts based on EIC and NLC Physics drivers Silicon detector technologies Simulations.
FSBB-M and FSBB-A: Two Large Scale CMOS Pixel Sensors Building Blocks Developed for the Upgrade of the Inner Tracking System of the ALICE Experiment Frédéric.
Status of the Micro Vertex Detector M. Deveaux, Goethe University Frankfurt for the CBM-MVD collaboration.
CLIC Collaboration Working Meeting: Work packages November 3, 2011 R&D on Detectors for CLIC Beam Monitoring at LBNL and UCSC/SCIPP Marco Battaglia.
A new idea of the vertex detector for ILC Y. Sugimoto Nov
EUDET Annual Meeting, Munich, October EUDET Beam Telescope: status of sensor’s PCBs Wojciech Dulinski on behalf.
SPiDeR  First beam test results of the FORTIS sensor FORTIS 4T MAPS Deep PWell Testbeam results CHERWELL Summary J.J. Velthuis.
STAR Microvertex Upgrade Meeting, Strasbourg, April Status of sensors from the engineering run AMS-035 OPTO Wojciech.
15-17 December 2003ACFA workshop, Mumbai - A.Besson R&D on CMOS sensors Development of large CMOS Sensors Characterization of the technology without epitaxy.
1 Improved Non-Ionizing Radiation Tolerance of CMOS Sensors Dennis Doering 1 *, Michael Deveaux 1, Melissa Domachowski 1, Michal Koziel 1, Christian Müntz.
Wieman: 1 LBNL Status and R&D plans for the STAR Microvertex Detector Development 22-Nov-03 LBNL Fred Bieser, Robin Gareus (Heidelberg), Leo Greiner, Howard.
Fine Pixel CCD Option for the ILC Vertex Detector
Status of the R&D on MAPS in Strasbourg and Frankfurt Outline: Operation principle of MAPS (a reminder) Fast readout Radiation hardness System integration.
Radiation tolerance of Monolithic Active Pixel Sensors (MAPS) Outline: Operation principle of MAPS Radiation tolerance against ionising doses (update)
Irfu saclay 3D-MAPS Design IPHC / IRFU collaboration Christine Hu-Guo (IPHC) Outline  3D-MAPS advantages  Why using high resistivity substrate  3 types.
Development of CMOS Pixel sensors (CPS) for vertex detectors in present and future collider experiments On behalf of IPHC-Strasbourg group (CNRS & Université.
High-resolution, fast and radiation-hard silicon tracking station CBM collaboration meeting March 2005 STS working group.
1 Radiation damage effects in Monolithic Active Pixel Sensors Implemented in an 0.18µm CMOS process Dennis Doering, Goethe-University Frankfurt am Main.
Vienna Conference on Instrumentation, February Development of CMOS Sensors for Future High Precision Position Sensitive.
Fully depleted MAPS: Pegasus and MIMOSA 33 Maciej Kachel, Wojciech Duliński PICSEL group, IPHC Strasbourg 1 For low energy X-ray applications.
1 An introduction to radiation hard Monolithic Active Pixel Sensors Or: A tool to measure Secondary Vertices Dennis Doering*, Goethe University Frankfurt.
Vertex Detector for GLD 3 Mar Y. Sugimoto KEK.
IPHC-LBNL meeting 3-5 April 2008 Radiation damage in the STAR environment and performance of MAPS sensors Compilation of different test results mostly.
CEA DSM Irfu 20 th october 2008 EuDet Annual Meeting Marie GELIN on behalf of IRFU – Saclay and IPHC - Strasbourg Zero Suppressed Digital Chip sensor for.
Recent developments on Monolithic Active Pixel Sensors (MAPS) for charged particle tracking. Outline The MAPS sensor (reminder) MIMOSA-22, a fast MAPS-sensor.
Strasbourg, France, 17 December, 2004, seminairGrzegorz DEPTUCH  MAPS technology decoupled charge sensing and signal transfer (improved radiation.
FPCCD VTX Overview Yasuhiro Sugimoto KEK Tokubetsu-Suisin annual meeting 11.
1 Radiation Hardness of Monolithic Active Pixel Sensors Dennis Doering, Goethe-University Frankfurt am Main on behalf of the CBM-MVD-Collaboration Outline.
FPCCD option Yasuhiro Sugimoto 2012/5/24 ILD 1.
Monolithic Active Pixel Sensors (MAPS) News from the MIMOSA serie Pierre Lutz (Saclay)
FPCCD Vertex detector 22 Dec Y. Sugimoto KEK.
Technology Overview or Challenges of Future High Energy Particle Detection Tomasz Hemperek
1 Heavy flavor physics and  Vertex detector. 2 People involved RNC Group Howard Wieman Hans-Georg Ritter Fred Bieser (Lead Electronic Engineer) Howard.
Irfu saclay Development of fast and high precision CMOS pixel sensors for an ILC vertex detector Christine Hu-Guo (IPHC) on behalf of IPHC (Strasbourg)
Radiation hardness of Monolithic Active Pixel Sensors (MAPS)
Vertex 2008 July 28–August 1, 2008, Utö Island, Sweden CMOS pixel vertex detector at STAR Michal Szelezniak on behalf of: LBNL: E. Anderssen, L. Greiner,
Improvement of ULTIMATE IPHC-LBNL September 2011 meeting, Strasbourg Outline  Summary of Ultimate test status  Improvement weak points in design.
20/12/2011Christina Anna Dritsa1 Design of the Micro Vertex Detector of the CBM experiment: Development of a detector response model and feasibility studies.
W. Kucewicz a, A. A.Bulgheroni b, M. Caccia b, P. Grabiec c, J. Marczewski c, H.Niemiec a a AGH-Univ. of Science and Technology, Al. Mickiewicza 30,
ULTIMATE: a High Resolution CMOS Pixel Sensor for the STAR Vertex Detector Upgrade Christine Hu-Guo on behalf of the IPHC (Strasbourg) CMOS Sensors group.
Mistral Christine Hu-Guo on behalf of the IPHC (Strasbourg) PICSEL team Outline  MISTRAL (inner layers)  Circuit proposal  Work plan  Sensor variant.
MIMO  3 Preliminary Test Results. MIMOSTAR 2 16/05/2007 MimoStar3 Status Evaluation of MimoStar2 chip  Test in Laboratory.
MISTRAL & ASTRAL: Two CMOS Pixel Sensor Architectures dedicated to the Inner Tracking System of the ALICE Experiment R&D strategy with two main streams.
Charge Multiplication Properties in Highly Irradiated Thin Epitaxial Silicon Diodes Jörn Lange, Julian Becker, Eckhart Fretwurst, Robert Klanner, Gunnar.
STAR meeting, June 2009, Strasbourg A. Dorokhov, IPHC, Strasbourg, France 1 Improved radiation tolerance of MAPS using a depleted epitaxial layer.
Front-end Electronic for the CALICE ECAL Physic Prototype Christophe de La Taille Julien Fleury Gisèle Martin-Chassard Front-end Electronic for the CALICE.
Highlights from the VTX session Marc Winter & Massimo Caccia R&D reports: – DEPFET (M. Trimpl) – CCD (S. Hillert) – UK-CMOS (J.Velthuis) – Continental-CMOS.
Fast Full Scale Sensors Development IPHC - IRFU collaboration MIMOSA-26, EUDET beam telescope Ultimate, STAR PIXEL detector Journées VLSI 2010 Isabelle.
Low Mass, Radiation Hard Vertex Detectors R. Lipton, Fermilab Future experiments will require pixelated vertex detectors with radiation hardness superior.
Irfu saclay CMOS Pixel Sensor Development: A Fast Readout Architecture with Integrated Zero Suppression Christine HU-GUO on behalf of the IRFU and IPHC.
Pixel Sensors for the Mu3e Detector Dirk Wiedner on behalf of Mu3e February Dirk Wiedner PSI 2/15.
Further improvement of the TC performances Marie GELIN on behalf of IPHC - Strasbourg and IRFU – Saclay Investigation of a new substrate (High Resistivity)
ECFA Durham, September Recent progress on MIMOSA sensors A.Besson, on behalf of IReS/LEPSI : M. Deveaux, A. Gay, G. Gaycken, Y. Gornushkin, D. Grandjean,
Design and Characterization of a Novel, Radiation-Resistant Active Pixel Sensor in a Standard 0.25 m CMOS Technology P.P. Allport, G. Casse, A. Evans,
M.Winter, on behalf of IPHC (ex-IReS) Strasbourg
Status of the UK active pixel collaboration
CMOS pixel sensors & PLUME operation principles
Radiation tolerance of MAPS
Rita De Masi IPHC-Strasbourg on behalf of the IPHC-IRFU collaboration
Yasuhiro Sugimoto KEK 17 R&D status of FPCCD VTX Yasuhiro Sugimoto KEK 17
Vertex Detector Overview Prototypes R&D Plans Summary.
TCAD Simulation and test setup For CMOS Pixel Sensor based on a 0
Enhanced Lateral Drift (ELAD) sensors
Status of CCD Vertex Detector R&D for GLC
Presentation transcript:

November 2003ECFA-Montpellier 1 Status on CMOS sensors Auguste Besson on behalf of IRES/LEPSI: M. Deveaux, A. Gay, G. Gaycken, Y. Gornushkin, D. Grandjean, S. Heini, A. Himmi, Ch. Hu, H. Souffi-Kebbati, I. Valin, M. Winter, S. Heini, A. Himmi, Ch. Hu, H. Souffi-Kebbati, I. Valin, M. Winter, G. Claus, C. Colledani, G. Deptuch, W. Dulinski (M6/M8 DAPNIA: Y. Degerli, N. Fourches, P. Lutz) Develop. of large CMOS sensors (3-T/pixel) Develop. of large CMOS sensors (3-T/pixel) Caracterization of the technology without epitaxy Caracterization of the technology without epitaxy R&D on fast sensors. R&D on fast sensors schedule and summary 2004 schedule and summary

November 2003A. Besson, ECFA-Montpellier 2 HistoryHistory MIMOSA 1,2,4,5 tested at CERN-SPS with 120 GeV/c  -MIMOSA 1,2,4,5 tested at CERN-SPS with 120 GeV/c  - M6 tests in progressM6 tests in progress M7 available soonM7 available soon SUCESSOR 2 (SUCIMA PROJECT): beam test in 2003SUCESSOR 2 (SUCIMA PROJECT): beam test in 2003  40  m pitch, no epitaxial layer.  2003: M4, M5, M6 tests, M7 fabricated

November 2003A. Besson, ECFA-Montpellier 3 3-T/pixel large CMOS sensors (M5) AMS 0.6  m (M1 like)AMS 0.6  m (M1 like)  reticle size 19.4 x 17.4 mm 2  512 x 512 pixels (/ each of 4 matrices)  17x17  m pitch 4 sub-matrices per sensors, read-out in parallel4 sub-matrices per sensors, read-out in parallel 6 wafers (6’’) built in wafers (6’’) built in wafers thinned down to 120  m (2 in 2003)3 wafers thinned down to 120  m (2 in 2003) 2002 results:2002 results:  Yield %   det ≳ 99%;  sp ~1.7  m;  ~0.2%

November 2003A. Besson, ECFA-Montpellier 4 3-T large sensors: 2003 (2) Beam test at SPS (2003)Beam test at SPS (2003)  3 sensors  120 GeV/c  - Performance uniformity testsPerformance uniformity tests  between sub-matrices, sensors  diode size comparisons Small diode (3x3  m 2 ) Big diode (5x5  m 2 )

November 2003A. Besson, ECFA-Montpellier 5 3-T large sensors: results (3)  submatrices have similar properties  ~1 dead column / 512 (i.e. ~0.2% det inefficiency)  single point resolution ≲ 2.5  m (still improvable) Effect of particle incidenceEffect of particle incidence  chip turned w.r.t. beam direction  charge as expected

November 2003A. Besson, ECFA-Montpellier 6 3-T large sensors: M5-B (4) Mimosa 5-BMimosa 5-B  23 wafers produced in oct Slightly improved fabrication process (metalisation)Slightly improved fabrication process (metalisation)  should reduce dead columns rate.  should improve rate of good chips (yield)  setting up thinning to 15  m (Nov 03) (with a Si wafer on the electronics side for handling)  Application to bio-medical imaging (20-30 keV e - )

November 2003A. Besson, ECFA-Montpellier 7 3-T large sensors: application (5) STAR: extension of the Vertex Detector (2006)STAR: extension of the Vertex Detector (2006)  charm physics  small radius, granular and thin detector  2 pixel layers  ≳ 1000 cm 2 R (layer 1) ≳ 2 cm ; R (layer 2) ≲ 4 cm ;  M5 performances are close to the STAR requirements  started a collaboration with LBL (and BNL)  first MIMO⋆1 prototype in summer 2004 (new TSMC 0.25  m tech.) What to improve ? What to improve ? read out time (~ 24 ms) read out time (~ 24 ms) sensor thickness (~ 120  m) sensor thickness (~ 120  m) electronic noise (room T) electronic noise (room T) yield (not crucial) yield (not crucial) Requirements Requirements  pt ~ 3  m  pt ~ 3  m 2.6 kRad/year 2.6 kRad/year n eq /cm 2 /year n eq /cm 2 /year read out time ms read out time ms Power ≲ 100 mW/cm 2 Power ≲ 100 mW/cm 2 sensor thickness ≳ 50  m sensor thickness ≳ 50  m Room temperature Room temperature

November 2003A. Besson, ECFA 8 No epitaxial layer prototypes (M4) Properties:Properties:  AMS 0.35  m witout epitaxial layer. Low doped substrate  increases  e  120 GeV/c  - SPS beam tests Eff ≳ 99.5 % resolution  sp ~2,5  m (new)  Fabrication processes with epitaxial layer is not mandatory ! epitaxial layer is not mandatory !

November 2003A. Besson, ECFA-Montpellier 9 No epitaxial layer (M4) (2) Rad. tol. studies :Rad. tol. studies :  200 kRad (x-rays),  n eq /cm 2 S/N ↘ when T ↗S/N ↘ when T ↗ If T ≲ 20⁰C  no obvious effects on efficiency and spatial resolution If T ≲ 20⁰C  no obvious effects on efficiency and spatial resolution Radiation effects are negligible at this level (200 kRad ;1.4x10 11 n/cm 2 )Radiation effects are negligible at this level (200 kRad ;1.4x10 11 n/cm 2 )

November 2003A. Besson, ECFA-Montpellier 10 No epi. : SUCCESSOR 2 SUCCESSOR 2: (M4 like)SUCCESSOR 2: (M4 like)  bio-medical imaging, SUCIMA project.  (no epi. layer, AMS 0.35  m)  40x40  m 2 pixels  beam tests (oct. 2003)  different sub-structures tested (3T pixel, Self-Bias pixels with 2 different diode sizes)(3T pixel, Self-Bias pixels with 2 different diode sizes)  eff ≳ 99.9 %   sp ~5-6  m (~2 x M4 with 20  m pitch)  best performances for large diodes SB SB1 Charge (1,9,25 pixels) Noise vs T S/N vs T X resolution vs T ?

November 2003A. Besson, ECFA-Montpellier 11 R&D on fast sensors M1-M5  1M pixels read-out in 1-10 msM1-M5  1M pixels read-out in 1-10 ms FLC  1 st VD layer must be read-out in  s (beamstrahlung)FLC  1 st VD layer must be read-out in  s (beamstrahlung)  potentially tremendous data flow: e.g. 15 bits/pixels, t~25  s  500 Gbits/s/10 6 pixels !  main goal: fast signal treatment AND data compression integrated in the sensor Fast // read out of short columnsFast // read out of short columns Different prototypes with different signal treatment:Different prototypes with different signal treatment:  M6 (with DAPNIA): tests in 2003,  individual pixels and discri work fine, but large spread of pixel caracteristics (pedestal, noise, gain ?)  M7: available soon, tests in  M8 (with DAPNIA): submitted in Nov., tests in 2004

November 2003A. Besson, ECFA-Montpellier 12 SummarySummary Large sensors (M5) (1M pixels, AMS 0.6  m )Large sensors (M5) (1M pixels, AMS 0.6  m )  ready to be used for a real detector  2 nd fabrication (23 wafers) with a better yield expected  thinning down to 15  m in progress  application to extension of STAR Vertex detector in 2006 No epitaxial layer sensors (M4, SUC 2)No epitaxial layer sensors (M4, SUC 2)  validated for m.i.p. detection (eff ≳ 99.5%,  sp ~2,5  m)  fits industrial CMOS fabrication tendancy Fast response sensors (M6, M7, M8)Fast response sensors (M6, M7, M8)  studies: fab. techno., charge collection system, signal treatment architecture  read out speed, efficiency, zero sup., power diss. etc. 2003/2004 schedule2003/2004 schedule  M5-B tests  yield, thinning  M⋆1  available in summer 2004, tests in autumn  fast sensors: 2 prototypes  M7 and M8 tests  charge collection studies  ionising radiation tol.