IN-MEDIUM FORMATION OF J /y: PROBE OF CHARM QUARK THERMALIZATION R. L. THEWS UNIVERSITY OF ARIZONA XXXV INTERNATIONAL SYMPOSIUM ON MULTIPARTICLE DYNAMICS.

Slides:



Advertisements
Similar presentations
TJH: ISMD 2005, 8/9-15 Kromeriz, Czech Republic TJH: 1 Experimental Results at RHIC T. Hallman Brookhaven National Laboratory ISMD Kromeriz, Czech Republic.
Advertisements

Charm & bottom RHIC Shingo Sakai Univ. of California, Los Angeles 1.
K*(892) Resonance Production in Au+Au and Cu+Cu Collisions at  s NN = 200 GeV & 62.4 GeV Motivation Analysis and Results Summary 1 Sadhana Dash Institute.
Onset of J/  Melting in Quark- Gluon Fluid at RHIC Taku Gunji Center for Nuclear Study University of Tokyo Paper: Phys. Rev. C 76: (R), 2007 Collaboration.
Heavy Quark Probes of QCD Matter at RHIC Huan Zhong Huang University of California at Los Angeles ICHEP-2004 Beijing, 2004.
AGS-RHIC User’s Workshop -- Heavy Quark Production at RHIC Large Seminar Room, Physics Bldg May 13, 2004 Organizers: Vince Cianciolo, ORNL Huan Zhong Huang,
Jet-like correlations of heavy-flavor particles - From RHIC to LHC
Xiaorong Wang, SQM Measurement of Open Heavy Flavor with Single Muons in pp and dAu Collisions at 200 GeV Xiaorong Wang for PHENIX collaboration.
R. L. Thews Hard Probes 2004 Lisbon QUARKONIUM FORMATION IN STATISTICAL AND KINETIC MODELS R. L. THEWS UNIVERSITY OF ARIZONA HARD PROBES 2004 LISBON November.
Relativistic Heavy-Ion Collisions: Recent Results from RHIC David Hardtke LBNL.
J/  nuclear modification factor in nucleus-nucleus collisions Xiao-Ming Xu.
03/14/2006WWND2006 at La Jolla1 Identified baryon and meson spectra at intermediate and high p T in 200 GeV Au+Au Collisions Outline: Motivation Intermediate.
STAR upgrade workshop, Yale, Jun , People: F. Bieser, R. Gareus, L. Greiner, H. Matis, M. Oldenburg, F. Retiere, H.G. Ritter, K.S., A. Shabetai(IReS),
Johan Gonzalez - Strange Quark Matter 2006, UCLA - March J/ ψ measurements in Au+Au and p+p Collisions at 200 GeV Motivation J/ψ in Au+Au J/ψ in.
IN-MEDIUM FORMATION OF QUARKONIUM (“RECOMBINATION”) R. L. THEWS UNIVERSITY OF ARIZONA SQM2006 UCLA MARCH 26-31, 2006.
Direct-Photon Production in PHENIX Oliver Zaudtke for the Collaboration Winter Workshop on Nuclear Dynamics 2006.
5-12 April 2008 Winter Workshop on Nuclear Dynamics STAR Particle production at RHIC Aneta Iordanova for the STAR collaboration.
KINETIC MODEL RESULTS FOR HEAVY-QUARK COALESCENCE R. L. THEWS UNIVERSITY OF ARIZONA Characterization of the Quark Gluon Plasma with Heavy Quarks
Charmonium Production in Heavy-Ion Collisions Loïc Grandchamp Lawrence Berkeley National Laboratory Texas A&M, Dec. 10 th 2004 w/ R. Rapp.
Sourav Tarafdar Banaras Hindu University For the PHENIX Collaboration Hard Probes 2012 Measurement of electrons from Heavy Quarks at PHENIX.
Recent measurements of open heavy flavor production by PHENIX Irakli Garishvili, Lawrence Livermore National Laboratory PHENIX collaboration  Heavy quarks.
Strange and Charm Probes of Hadronization of Bulk Matter at RHIC International Symposium on Multi-Particle Dynamics Aug 9-15, 2005 Huan Zhong Huang University.
High p T  0 Production in p+p, Au+Au, and d+Au Stefan Bathe UC Riverside for the Collaboration Topics in Heavy Ion Collisions McGill University, Montreal,
Steffen A. RHIC #1 Steffen A. Bass Duke University & RIKEN-BNL Research Center The Protons Puzzle at RHIC - the demise of pQCD? Recombination.
A SCENIC OVERVIEW OF J/  PRODUCTION IN HEAVY ION COLLISIONS AT PHENIX Matthew Wysocki, University of Colorado For the PHENIX Collaboration.
Measurements of  Production and Nuclear Modification Factor at STAR Anthony Kesich University of California, Davis STAR Collaboration.
 production in p+p and Au+Au collisions in STAR Debasish Das UC Davis (For the STAR Collaboration)‏
Kwangbok Lee, LANL for the PHENIX collaboration DIS 2011, Newport News, VA Heavy vector meson results at PHENIX 1.
☍ Studying bottmonium in hot/cold QGP medium. ☍ Triggering on ϒ production in STAR ☍ Baseline measurement: ϒ cross section in pp collisions. ☍ ϒ and CNM.
Heavy flavor production at RHIC Yonsei Univ. Y. Kwon.
Peak extraction Because of scarcity of statistics, the peak parameters are fixed from embedded MC. The relative suppression of the excited states is taken.
Manuel Calderón de la Barca Sánchez UC Davis STAR Collaboration Hard Probes 2012 Cagliari, Sardinia, Italy. 30/May/2012.
Hadron Collider Physics 2012, 12/Nov/2012, KyotoShinIchi Esumi, Univ. of Tsukuba1 Heavy Ion results from RHIC-BNL ShinIchi Esumi Univ. of Tsukuba Contents.
Round Table Workshop on NICA Physics Dubna,September 9-12,20091 J/Ψ Production in Heavy Ion Collisions J/Ψ Production in Heavy Ion Collisions Pengfei ZHUANG.
Workshop on QCD and RHIC Physics, Hefei, July Heavy Flavors in High Energy Nuclear Collisions ZHUANG Pengfei (Tsinghua University, Beijing) ● J/Psi.
Ralf Averbeck Stony Brook University Hot Quarks 2004 Taos, New Mexico, July 19-24, 2004 for the Collaboration Open Heavy Flavor Measurements with PHENIX.
Loïc Grandchamp Lawrence Berkeley National Laboratory “Probing QCD with High Energy Nuclear Collisions” Hirschegg, Jan ’05 with H. van Hees, S.
Pengfei ZHUANGQuark Matter 2006, Shanghai, China, Nov. 14 – 20, 夸克胶子等离子体中 J/Ψ 的压低和重产生 J/Ψ Suppression and Regeneration in Quark-Gluon Plasma Pengfei.
Probing the properties of dense partonic matter at RHIC Y. Akiba (RIKEN) for PHENIX collaboration.
Heavy Quark Energy Loss due to Three-body Scattering in a Quark- Gluon Plasma Wei Liu Texas A&M University  Introduction  Heavy quark scattering in QGP.
John Harris (Yale) LHC Conference, Vienna, Austria, 15 July 2004 Heavy Ions - Phenomenology and Status LHC Introduction to Rel. Heavy Ion Physics The Relativistic.
An Tai Aug.9-14, 2004, CCAST Workshop, Beijing 1 Open charm and charmonium production at RHIC (1) Motivations (2) Results from STAR and PHENIX (3) Conclusions.
B. Kim, International Workshop on Heavy Quark Production in HIC 1 Byungil Kim For the PHENIX Collaboration International Workshop on Heavy Quark Production.
Ralf Averbeck, Stony Brook University XXXX th Rencontres de Moriond La Thuile, Italy, March 12-19, 2005 The Charm (and Beauty) of RHIC l Heavy flavor in.
OPEN HEAVY FLAVORS 1. Heavy Flavor 2 Heavy quarks produced in the early stages of the collisions (high Q2)  effective probe of the high-density medium.
Olena Linnyk Charmonium in heavy ion collisions 16 July 2007.
Charm measurements at SPS to RHIC Y. Akiba (KEK) March 14, 2003 Strangeness in Quark Matter 2003.
PHENIX results on J/  production in Au+Au and Cu+Cu collisions at  S NN =200 GeV Hugo Pereira Da Costa CEA Saclay, for the PHENIX collaboration Quark.
BY A PEDESTRIAN Related publications direct photon in Au+Au  PRL94, (2005) direct photon in p+p  PRL98, (2007) e+e- in p+p and Au+Au 
Roy A. Lacey, Stony Brook, ISMD, Kromĕříž, Roy A. Lacey What do we learn from Correlation measurements at RHIC.
Strange Probes of QCD Matter Huan Zhong Huang Department of Physics and Astronomy University of California Los Angeles, CA Oct 6-10, 2008; SQM2008.
24 Nov 2006 Kentaro MIKI University of Tsukuba “electron / photon flow” Elliptic flow measurement of direct photon in √s NN =200GeV Au+Au collisions at.
Hadronic resonance production in Pb+Pb collisions from the ALICE experiment Anders Knospe on behalf of the ALICE Collaboration The University of Texas.
Quark Matter 2005, Budapest Xin-Nian Wang Lawrence Berkeley National Laboratory Jet and Leading Hadron Production.
What Can We Learn from Charm Production at RHIC? James Nagle University of Colorado at Boulder c _c_c.
1 Cold and Hot nuclear matter effects on Charmonium production Kai Zhou (Tsinghua University,Beijing) In collaboration with: Baoyi Chen (Tsinghua University)
Heavy quark energy loss in hot and dense nuclear matter Shanshan Cao In Collaboration with G.Y. Qin, S.A. Bass and B. Mueller Duke University.
Ming X. Liu Moriond04 3/28-4/ Open Charm and Charmonium Production at RHIC Ming X. Liu Los Alamos National Laboratory (PHENIX Collaboration) - p+p.
Intermediate pT results in STAR Camelia Mironov Kent State University 2004 RHIC & AGS Annual Users' Meeting Workshop on Strangeness and Exotica at RHIC.
Elliptic Flow of Inclusive Photon Elliptic Flow of Inclusive Photon Ahmed M. Hamed Midwest Critical Mass University of Toledo, Ohio Oct. 22,
Heavy Flavor Measurements at RHIC&LHC W. Xie (Purdue University, West Lafayette) W. Xie (Purdue University, West Lafayette) Open Heavy Flavor Workshop.
J/  momentum distribution in heavy ion collisions at LHC Xiao-Ming Xu.
An Tai QM2004, Oakland Jan.11-17, 2004 STAR 1 STAR measurements of open charm production in dAu collisions at √s NN =200 GeV An Tai For the STAR Collaboration.
PHENIX J/  Measurements at  s = 200A GeV Wei Xie UC. RiverSide For PHENIX Collaboration.
Review of ALICE Experiments
Marzia Rosati Iowa State University
International CCAST Summer School and Workshop on QCD and RHIC Physics
System Size and Energy Dependence of -meson Production at RHIC
用重味探测夸克胶子等离子体 Heavy Flavor as a Probe of Quark-Gluon Plasma
In Media Progress Report
Presentation transcript:

IN-MEDIUM FORMATION OF J /y: PROBE OF CHARM QUARK THERMALIZATION R. L. THEWS UNIVERSITY OF ARIZONA XXXV INTERNATIONAL SYMPOSIUM ON MULTIPARTICLE DYNAMICS KROMĚŘÍŽ, CZECH REPUBLIC AUGUST 9-15, 2005

QUARKONIUM FORMATION MATSUI-SATZ:: R plasma screening < R quarkonium : SUPPRESSION KHARZEEV-SATZ: Ionization with deconfined gluons NA50: Anomalous Suppression ALTERNATIVES: Dense hadronic medium, comovers

Multiple ccbar pairs in high energy AA Collisions from extrapolation of low energy 20 from PHENIX electrons 40 from STAR electrons and K  CENTRAL VALUES:

PROBE REGION OF COLOR DECONFINEMENT WITH MULTIPLE PAIRS OF HEAVY QUARKS Avoids Matsui-Satz Condition Form Quarkonium directly in the Medium Formation and Suppression Competition Scenario supported by lattice calculations of quarkonium spectral functions

IF THE INCOHERENT RECOMBINATION OF HEAVY QUARKS DETERMINES FINAL HADRONIC ABUNDANCES:

FORMATION CENTRALITY SIGNATURES

FORMATION OF QUARKONIUM IN REGION OF COLOR DECONFINEMENT Formation process is Inverse of dissociation Model evolution of region with initial temperature and isentropic expansion, depends on contours of participant density Final population determined by competition between formation and dissociation rates R. L. Thews, M. Schroedter, and J. Rafelski, Phys. Rev. C63: (2001)

M. Asakawa and T. Hatsuda, Phys. Rev. Lett: (2004)

S. Datta, F. Karsch, P. Petreczky, I. Wetzorke, Phys. Rev. D69: (2004)

J/Psi yield is Quadratic in Total Charm is:

COMPARISON WITH INITIAL PHENIX DATA AT RHIC 200 Rates very sensitive to quark momentum distribution Centrality signature varies with magnitude of N cc

PHENIX – Phys. Rev. C69, (2004)

Kinetic Model Statistical Model predictions very sensitive to N cc and distribution Therm+Form

+ Model predictions very sensitive to N cc and distribution

M. Mangano and R. L. Thews: nucl-th/ Generate sample of ccbar pairs from NLO pQCD (smear LO q t ) 2.Supplement with k t to simulate initial state and confinement effects 3.Integrate formation rate using these events to define particle distributions (no cquark-medium interaction) 4.Repeat with cquark thermal+flow distribution (maximal cquark-medium interaction) DO THE Y AND P T SPECTRA PROVIDE A QUARK THERMALIZATION SIGNATURE?

All combinations of c and cbar contribute Total has expected (N ccbar ) 2 / V behavior Prefactor is integrated flux per ccbar pair

p-p data “select” unbiased diagonal c-cbar pairs

p-p data determine intrinsic k t

Use dAu broadening to determine nuclear k t

S. Gavin and M. Gyulassy, Phys. Lett. B214 (1988) Nuclear broadening from Initial state parton scattering, extract l 2 = / GeV 2 for Au-Au at RHIC, compare with /-.02 GeV 2 at fixed-target energy

P. Steinberg, Hot Quark 2004 Workshop, July 2004

J. Burward-Hoy, Winter Workshop on Nuclear Dynamics, 2004

Formation through “off-diagonal” pairs narrows rapidity distribution

Formation through “off-diagonal” pairs narrows p t distribution

Comparison with Thermal + Transverse Flow c-Quark Distributions K.A.Bugaev, M. Gazdzicki, M.I.Gorenstein, Phys.Lett.B544,127(2002) S.Batsouli, S.Kelly, M.Gyulassy, J.L.Nagle, Phys.Lett.B557,26 (2003)

Comparison with coalescence model: V Greco, C. M. Ko, R. Rapp, Phys. Lett. B595:202 (2004)

PHENIX PRESENTATION AT QUARK MATTER 2005

Absolute magnitude and centrality dependence tests require both open and hidden flavor measurements J/Psi p T and y measurements alone can provide signatures of in-medium recombination processes The difference of pQCD quark pair spectra for diagonal vs off-diagonal combinations survives in the J/Psi results Non-monatonic behavior of widths of transverse momentum spectra signal recombination In-medium formation process very sensitive to heavy quark thermalization and flow SUMMARY