Artificial Intelligence Lecture No. 9 Dr. Asad Ali Safi ​ Assistant Professor, Department of Computer Science, COMSATS Institute of Information Technology.

Slides:



Advertisements
Similar presentations
Russell and Norvig Chapter 7
Advertisements

Agents That Reason Logically Copyright, 1996 © Dale Carnegie & Associates, Inc. Chapter 7 Spring 2004.
Artificial Intelligence Knowledge-based Agents Russell and Norvig, Ch. 6, 7.
1 Knowledge-Based Agents Chapter CMSC 471 Adapted from slides by Tim Finin and Marie desJardins. Some material adopted from notes by Andreas Geyer-Schulz.
Knowledge Representation & Reasoning.  Introduction How can we formalize our knowledge about the world so that:  We can reason about it?  We can do.
Class Project Due at end of finals week Essentially anything you want, so long as its AI related and I approve Any programming language you want In pairs.
1 Problem Solving CS 331 Dr M M Awais Representational Methods Formal Methods Propositional Logic Predicate Logic.
Logical Agents Chapter 7. Why Do We Need Logic? Problem-solving agents were very inflexible: hard code every possible state. Search is almost always exponential.
Knowledge Representation & Reasoning (Part 1) Propositional Logic chapter 6 Dr Souham Meshoul CAP492.
Logical Agents Chapter 7. Why Do We Need Logic? Problem-solving agents were very inflexible: hard code every possible state. Search is almost always exponential.
Knowledge in intelligent systems So far, we’ve used relatively specialized, naïve agents. How can we build agents that incorporate knowledge and a memory?
Carla P. Gomes CS4700 CS 4700: Foundations of Artificial Intelligence Carla P. Gomes Module: Intro to Logic (Reading R&N: Chapter.
LOGICAL AGENTS Yılmaz KILIÇASLAN. Definitions Logical agents are those that can:  form representations of the world,  use a process of inference to.
Logical Agents Chapter 7 Feb 26, Knowledge and Reasoning Knowledge of action outcome enables problem solving –a reflex agent can only find way from.
Logical Agents Copyright, 1996 © Dale Carnegie & Associates, Inc. Chapter 7 Spring 2005.
Propositional Logic: Logical Agents (Part I) This lecture topic: Propositional Logic (two lectures) Chapter (this lecture, Part I) Chapter 7.5.
Agents that Reason Logically Logical agents have knowledge base, from which they draw conclusions TELL: provide new facts to agent ASK: decide on appropriate.
Logical Agents Chapter 7 (based on slides from Stuart Russell and Hwee Tou Ng)
Logical Agents. Knowledge bases Knowledge base = set of sentences in a formal language Declarative approach to building an agent (or other system): 
Knowledge-Based Agents Chapter Some material adopted from notes by Andreas Geyer-Schulz and Chuck Dyer.
Propositional Logic: Logical Agents (Part I) This lecture topic: Propositional Logic (two lectures) Chapter (this lecture, Part I) Chapter 7.5.
A knowledge-based agent
‘In which we introduce a logic that is sufficent for building knowledge- based agents!’
1 Logical Agents CS 171/271 (Chapter 7) Some text and images in these slides were drawn from Russel & Norvig’s published material.
Dr. Shazzad Hosain Department of EECS North South Universtiy Lecture 04 – Part A Knowledge Representation and Reasoning.
Logical Agents Chapter 7. Outline Knowledge-based agents Wumpus world Logic in general - models and entailment Propositional (Boolean) logic Equivalence,
Logical Agents Chapter 7. Outline Knowledge-based agents Wumpus world Logic in general - models and entailment Propositional (Boolean) logic Equivalence,
Class Project Due at end of finals week Essentially anything you want, so long as its AI related and I approve Any programming language you want In pairs.
ARTIFICIAL INTELLIGENCE [INTELLIGENT AGENTS PARADIGM] Professor Janis Grundspenkis Riga Technical University Faculty of Computer Science and Information.
1 CMSC 671 Fall 2001 Class #9 – Tuesday, October 2.
1 CMSC 471 Fall 2002 Class #9– Monday, Sept Knowledge Representation Chapter Some material adopted from notes by Andreas Geyer-Schulz and.
CS 4100 Artificial Intelligence Prof. C. Hafner Class Notes Jan 17, 2012.
Logical Agents Chapter 7. Knowledge bases Knowledge base (KB): set of sentences in a formal language Inference: deriving new sentences from the KB. E.g.:
1 Logical Agents CS 171/271 (Chapter 7) Some text and images in these slides were drawn from Russel & Norvig’s published material.
1 Logical Agents Chapter 7. 2 A simple knowledge-based agent The agent must be able to: –Represent states, actions, etc. –Incorporate new percepts –Update.
Knowledge Representation Lecture # 17, 18 & 19. Motivation (1) Up to now, we concentrated on search methods in worlds that can be relatively easily represented.
For Friday Read chapter 8 Homework: –Chapter 7, exercise 1.
Logical Agents Chapter 7. Outline Knowledge-based agents Logic in general Propositional (Boolean) logic Equivalence, validity, satisfiability.
1 Knowledge-Based Agents Chapter Some material adopted from notes by Andreas Geyer-Schulz and Chuck Dyer.
Knowledge-based agents: they keep track of the world by means of an internal state which is constantly updated by the agent itself A Knowledge-Based Agent.
Knowledge-Based Agents Chapter Some material adopted from notes by Andreas Geyer-Schulz and Chuck Dyer.
Computing & Information Sciences Kansas State University Wednesday, 13 Sep 2006CIS 490 / 730: Artificial Intelligence Lecture 10 of 42 Wednesday, 13 September.
1 UNIT-3 KNOWLEDGE REPRESENTATION. 2 Agents that reason logically(Logical agents) A Knowledge based Agent The Wumpus world environment Representation,
Logical Agents Chapter 7. Outline Knowledge-based agents Wumpus world Logic in general - models and entailment Propositional (Boolean) logic Equivalence,
Logical Agents Chapter 7 Part I. 2 Outline Knowledge-based agents Wumpus world Logic in general - models and entailment Propositional (Boolean) logic.
1 Knowledge Representation Logic and Inference Propositional Logic Vumpus World Knowledge Representation Logic and Inference Propositional Logic Vumpus.
Knowledge-Based Agents Chapter Some material adopted from notes by Andreas Geyer-Schulz and Chuck Dyer.
Artificial Intelligence Logical Agents Chapter 7.
Logical Agents Chapter 7. Outline Knowledge-based agents Wumpus world Logic in general - models and entailment Propositional (Boolean) logic Equivalence,
Artificial Intelligence Logical Agents Chapter 7.
Logical Agents. Inference : Example 1 How many variables? 3 variables A,B,C How many models? 2 3 = 8 models.
LOGICAL AGENTS CHAPTER 7 AIMA 3. OUTLINE  Knowledge-based agents  Wumpus world  Logic in general - models and entailment  Propositional (Boolean)
Logical Agents. Outline Knowledge-based agents Logic in general - models and entailment Propositional (Boolean) logic Equivalence, validity, satisfiability.
Knowledge-Based Agents Chapter Some material adopted from notes by Andreas Geyer-Schulz and Chuck Dyer.
Propositional Logic: Logical Agents (Part I)
Class #10– Wednesday, October 1
EA C461 – Artificial Intelligence Logical Agent
Learning and Knowledge Acquisition
Artificial Intelli-gence 1: logic agents
Logical Agents Chapter 7.
Artificial Intelligence
Artificial Intelligence: Logic agents
Class #9– Thursday, September 29
Logical Agents Chapter 7.
CS 416 Artificial Intelligence
Artificial Intelligence Lecture 10: Logical Agents
Knowledge Representation I (Propositional Logic)
CMSC 471 Fall 2011 Class #10 Tuesday, October 4 Knowledge-Based Agents
Logical Agents Prof. Dr. Widodo Budiharto 2018
Presentation transcript:

Artificial Intelligence Lecture No. 9 Dr. Asad Ali Safi ​ Assistant Professor, Department of Computer Science, COMSATS Institute of Information Technology (CIIT) Islamabad, Pakistan.

Summary of Previous Lecture Informed (Heuristic) search Heuristic evaluation function Greedy Best-First Search A* Search

Today’s Lecture A knowledge-based agent The Wumpus World Syntax, semantics What is logic?

4 Knowledge-Based Agents

Big Idea Drawing reasonable conclusions from a set of data (observations, beliefs, etc) seems key to intelligence Logic is a powerful and well developed approach to this and highly regarded by people Logic is also a strong formal system that we can programs computers to use Maybe we can reduce any AI problem to figuring out how to represent it in logic and apply standard proof techniques to generate solutions

6 A knowledge-based agent A knowledge-based agent includes a knowledge base and an inference system. A knowledge base is a set of representations of facts of the world. Each individual representation is called a sentence. The sentences are expressed in a knowledge representation language. The agent operates as follows: 1. It TELLs the knowledge base what it perceives. 2. It ASKs the knowledge base what action it should perform. 3. It performs the chosen action.

7 Architecture of a knowledge-based agent Knowledge Level. – The most abstract level: describe agent by saying what it knows. – Example: A taxi agent might know that the Golden Gate Bridge connects San Francisco with the Marin County. Logical Level. – The level at which the knowledge is encoded into sentences. – Example: Links(GoldenGateBridge, SanFrancisco, MarinCounty). Implementation Level. – The physical representation of the sentences in the logical level. – Example: ‘(links goldengatebridge sanfrancisco marincounty)

8 The Wumpus World environment The Wumpus computer game The agent explores a cave consisting of rooms connected by passageways. Looking somewhere in the cave is the Wumpus, a beast that eats any agent that enters its room. Some rooms contain bottomless pits that trap any agent that wanders into the room. Occasionally, there is a heap of gold in a room. The goal is to collect the gold and exit the world without being eaten

9 A typical Wumpus world The agent always starts in the field [1,1]. The task of the agent is to find the gold, return to the field [1,1] and climb out of the cave.

10 Agent in a Wumpus world: Percepts The agent perceives – a stench in the square containing the wumpus and in the adjacent squares (not diagonally) – a breeze in the squares adjacent to a pit – a glitter in the square where the gold is – a bump, if it walks into a wall – a woeful scream everywhere in the cave, if the wumpus is killed The percepts will be given as a five-symbol list: If there is a stench, and a breeze, but no glitter, no bump, and no scream, the percept is [Stench, Breeze, None, None, None] The agent can not perceive its own location.

11 Wumpus actions go forward turn right 90 degrees turn left 90 degrees grab means pick up an object that is in the same square as the agent shoot means fire an arrow in a straight line in the direction the agent is looking. The arrow continues until it either hits and kills the wumpus or hits the wall. The agent has only one arrow. Only the first shot has any effect. climb is used to leave the cave. Only effective in start field. die, if the agent enters a square with a pit or a live wumpus. (No take-backs!)

12 Wumpus goal The agent’s goal is to find the gold and bring it back to the start as quickly as possible, without getting killed. – 1000 points reward for climbing out of the cave with the gold – 1 point deducted for every action taken – points penalty for getting killed

Wumpus world characterization Fully Observable No – only local perception Deterministic Yes – outcomes exactly specified Episodic No – sequential at the level of actions Static Yes – Wumpus and Pits do not move Discrete Yes Single-agent? Yes – Wumpus is essentially a natural feature

14 A typical Wumpus world The agent always starts in the field [1,1]. The task of the agent is to find the gold, return to the field [1,1] and climb out of the cave.

15 The Wumpus agent’s first step

16 Later

Exploring a wumpus world Aagent Bbreeze Gglitter OKsafe cell Ppit Sstench Wwumpus Aagent Bbreeze Gglitter OKsafe cell Ppit Sstench Wwumpus

Exploring a wumpus world Aagent Bbreeze Gglitter OKsafe cell Ppit Sstench Wwumpus Aagent Bbreeze Gglitter OKsafe cell Ppit Sstench Wwumpus

Exploring a wumpus world Aagent Bbreeze Gglitter OKsafe cell Ppit Sstench Wwumpus Aagent Bbreeze Gglitter OKsafe cell Ppit Sstench Wwumpus

Exploring a wumpus world Aagent Bbreeze Gglitter OKsafe cell Ppit Sstench Wwumpus Aagent Bbreeze Gglitter OKsafe cell Ppit Sstench Wwumpus

Exploring a wumpus world Aagent Bbreeze Gglitter OKsafe cell Ppit Sstench Wwumpus Aagent Bbreeze Gglitter OKsafe cell Ppit Sstench Wwumpus

Exploring a wumpus world Aagent Bbreeze Gglitter OKsafe cell Ppit Sstench Wwumpus Aagent Bbreeze Gglitter OKsafe cell Ppit Sstench Wwumpus

Exploring a wumpus world Aagent Bbreeze Gglitter OKsafe cell Ppit Sstench Wwumpus Aagent Bbreeze Gglitter OKsafe cell Ppit Sstench Wwumpus

Exploring a wumpus world Aagent Bbreeze Gglitter OKsafe cell Ppit Sstench Wwumpus Aagent Bbreeze Gglitter OKsafe cell Ppit Sstench Wwumpus

Exploring a wumpus world Aagent Bbreeze Gglitter OKsafe cell Ppit Sstench Wwumpus Aagent Bbreeze Gglitter OKsafe cell Ppit Sstench Wwumpus P?

Representing Knowledge The agent that solves the wumpus world can most effectively be implemented by a knowledge-based approach Need to represent states and actions, update internal representations, deduce hidden properties and appropriate actions Need a formal representation for the KB And a way to reason about that representation

27 Representation, reasoning, and logic The object of knowledge representation is to express knowledge in a computer-tractable form, so that agents can perform well. A knowledge representation language is defined by: – its syntax, which defines all possible sequences of symbols that constitute sentences of the language. Examples: Sentences in a book, bit patterns in computer memory. – its semantics, which determines the facts in the world to which the sentences refer. Each sentence makes a claim about the world. An agent is said to believe a sentence about the world.

28 The connection between sentences and facts Semantics maps sentences in logic to facts in the world. The property of one fact following from another is mirrored by the property of one sentence being entailed by another.

Logic in general Logics are formal languages for representing information such that conclusions can be drawn Syntax defines the sentences in the language Semantics define the "meaning" of sentences – i.e., define truth of a sentence in a world E.g., the language of arithmetic – x+2 ≥ y is a sentence; x2+y > {} is not a sentence – x+2 ≥ y is true iff the number x+2 is no less than the number y – x+2 ≥ y is true in a world where x = 7, y = 1 – x+2 ≥ y is false in a world where x = 0, y = 6

Entailment Entailment means that one thing follows from another: KB ╞ α Knowledge base KB entails sentence α if and only if α is true in all worlds where KB is true – E.g., small dog and cats…. –d +c – E.g., x+y = 4 entails 4 = x+y – Entailment is a relationship between sentences (i.e., syntax) that is based on semantics – a relationship between two sentences such that if the sentences First is true, the second must also be true, as in Her son drives her to work every day and Her son knows ho w to drive.

Inference, Soundness, Completeness KB ├ i α, sentence α can be derived from KB by procedure i Soundness: i is sound if whenever KB ├ i α, it is also true that KB ╞ α Completeness: i is complete if whenever KB ╞ α, it is also true that KB ├ i α Preview: we will define a logic (first-order logic) which is expressive enough to say almost anything of interest, and for which there exists a sound and complete inference procedure. That is, the procedure will answer any question whose answer follows from what is known by the KB.

Logic as a KR language Propositional Logic First Order Higher Order Modal Fuzzy Logic Multi-valued Logic Probabilistic Logic Temporal Non-monotonic Logic

Ontology and epistemology

Summery of Today’s Lecture A knowledge-based agent The Wumpus World Syntax, semantics