Motivation for Studying Fluid Mechanics

Slides:



Advertisements
Similar presentations
Phy 212: General Physics II Chapter 14: Fluids Lecture Notes.
Advertisements

Liquids and Gasses Matter that “Flows”
Chapter 3: Pressure and Fluid Statics
Chapter 3: Static Fluid Department of Hydraulic Engineering - School of Civil Engineering - Shandong University
Lec 4: Fluid statics, buoyancy and stability, pressure
Fluid Statics.
Water Pressure and Pressure Forces
Lecture 8b – States of Matter Fluid Copyright © 2009 Pearson Education, Inc.
Water Pressure and Pressure Force (Revision)
Statics CVEN 311 . Definitions and Applications ä Statics: no relative motion between adjacent fluid layers. ä Shear stress is zero ä Only _______ can.
1 CTC 261 Hydraulics Fluid Statics. 2 Objectives  Know the difference between absolute and gage pressure  Know how to calculate hydrostatic pressures.
Pressure Thermodynamics Professor Lee Carkner Lecture 2.
Chapter 15 Fluids.
Monroe L. Weber-Shirk S chool of Civil and Environmental Engineering Statics CEE 331 June 29, 2015 CEE 331 June 29, 2015 
Chapter 3: Pressure and Fluid Statics
1 MECH 221 FLUID MECHANICS (Fall 06/07) Chapter 2: FLUID STATICS Instructor: Professor C. T. HSU.
Fluid mechanics 3.1 – key points
Chapter 3: Pressure Measurement
Fluid Statics Lecture - 2.
Hydrostatic Pressure distribution in a static fluid and its effects on solid surfaces and on floating and submerged bodies. Fluid Statics M. Bahrami ENSC.
Fluid Statics.
Forces Due to Static Fluid
Introduction to Fluid Mechanics
Monday, Nov. 22, 2004PHYS , Fall 2004 Dr. Jaehoon Yu 1 1.Density and Specific Gravity 2.Fluid and Pressure 3.Absolute and Relative Pressure 4.Pascal’s.
Chapter 10 Fluids.
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Fluid Mechanics Chapter 13 2 Fluid Anything that can flow A liquid or a gas Physics Chapter 13.
PRESSURE Objectives of Class: Define and explain Absolute pressure, Atmospheric pressure and Gage pressure. Define pressure at a point. Derive pressure.
CHAPTER 5: PRESSURE 5.1 Pressure and Its Units
Chapter 3: Pressure and Fluid Statics
Static Fluids.
E Construction Surveying HYDRAULICS. Introduction surveyors –usually not be directly involved in the design of hydraulics systems –most certainly.
CHAPTER 2 Fluid Statics and Its Applications Nature of fluids
Chapter 3 PRESSURE AND FLUID STATICS. John Ninomiya flying a cluster of 72 helium-filled balloons over Temecula, California in April of The helium.
Chapter 3: Pressure and Fluid Statics
CE 1501 CE 150 Fluid Mechanics G.A. Kallio Dept. of Mechanical Engineering, Mechatronic Engineering & Manufacturing Technology California State University,
5.1 Hydrostatics 5.2 Fluid flow 5.3 Pascal Law for pressure 5.4 Archimedean Law 5.5 Continuity equation 5.6 Bernoulli equation. 5.7 Diffusion and endosmosis.
Chapter 10 Fluids. Units of Chapter 10 Phases of Matter Density Pressure in Fluids Atmospheric Pressure and Gauge Pressure Pascal’s Principle Measurement.
Wednesday, Nov. 28, 2007 PHYS , Fall 2007 Dr. Jaehoon Yu 1 PHYS 1443 – Section 002 Lecture #23 Wednesday, Nov. 28, 2007 Dr. Jae Yu Density and.
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
FLUID STATICS: Hydrostatic Force on Plane Surfaces slide 18.
Fluid Mechanics and Applications MECN 3110
Water Pressure and Pressure Force (Revision) The Islamic University of Gaza Faculty of Engineering Civil Engineering Department Hydraulics - ECIV 3322.
1 Fluid Mechanics Chapter 13 2 Fluid Anything that can flow A liquid or a gas.
Chapter 14 Fluids What is a Fluid? A fluid, in contrast to a solid, is a substance that can flow. Fluids conform to the boundaries of any container.
Fluids Unlike a solid, a fluid can flow. Fluids conform to the shape of the container in which it is put. Liquids are fluids the volume of which does not.
FLUID STATICS HYDROSTATIC FORCES AND BUOYANCY
FLUID STATICS: Hydrostatic Force on Plane Surfaces slide 18.
MAE 3130: Fluid Mechanics Lecture 2: Fluid Statics (Part A) Spring 2003 Dr. Jason Roney Mechanical and Aerospace Engineering.
Introduction to Basic Concepts of Thermodynamics
point of interest Pressure is a scalar quantity.
Fluids. Introduction The 3 most common states of matter are: –Solid: fixed shape and size (fixed volume) –Liquid: takes the shape of the container and.
Dr. Kamel Mohamed Guedri Umm Al-Qura University, Room H1091
Chapter 14 Fluids.
NAZARIN B. NORDIN What you will learn: Pascal’s law Incompressibility of fluids Pressure, force ratio Archimedes principle Density.
Wednesday, Apr. 14, 2004PHYS , Spring 2004 Dr. Jaehoon Yu 1 PHYS 1441 – Section 004 Lecture #20 Wednesday, Apr. 14, 2004 Dr. Jaehoon Yu Variation.
Objectives  Introduce the concept of pressure;  Prove it has a unique value at any particular elevation;  Show how it varies with depth according.
Fluids. Units of Chapter 10 Phases of Matter Density and Specific Gravity Pressure in Fluids Atmospheric Pressure and Gauge Pressure Pascal’s Principle.
Fluid Mechanics Chapter 9 Review. Agenda:  9.1: Fluids and Buoyant Force  9.2: Fluid Pressure and Temperature  9.3: Fluids in Motion  9.4: Properties.
AKM 205 AKIŞKANLAR MEKANİĞİ Yrd.Doç.Dr. Onur Tunçer İstanbul Teknik Üniversitesi “AKIŞKAN STATİĞİ”
Lecture 4. Pressure. 4.1 Pressure and it units Pressure = “the normal (perpendicular) force per unit area” Pressure at the bottom of the static (nonmoving)
Phys 101, General Physics I. Reference Book is Fluid Mechanics A fluid is a collection of molecules that are randomly arranged and held together by weak.
Chapter 14 Lecture 28: Fluid Mechanics: I HW10 (problems):14.33, 14.41, 14.57, 14.61, 14.64, 14.77, 15.9, Due on Thursday, April 21.
Pressure Pressure is defined as the force exerted by a fluid per unit area. Units in SI are Pa=N/m2. The pressure unit Pascal is too small for pressure.
Chapter 3: Pressure and Fluid Statics
Water Pressure and Pressure Force (Revision)
Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.
Lecture no 11 & 12 HYDROSTATIC FORCE AND PRESSURE ON PLATES
Fluid statics Hydrostatics or Fluid Statics is the study of fluids at rest. It's practical applications are numerous. Some of which are Fluid Manometers,
Chapter 2 Fluid Static - Pressure
Presentation transcript:

Motivation for Studying Fluid Mechanics Faculty of Engineering Fluid Mechanics Lecture 4 Dr. Hasan Hamouda

Pressure and Fluid Statics

Pressure Pressure is defined as a normal force exerted by a fluid per unit area. Units of pressure are N/m2, which is called a pascal (Pa). Since the unit Pa is too small for pressures encountered in practice, kilopascal (1 kPa = 103 Pa) and megapascal (1 MPa = 106 Pa) are commonly used. Other units include bar, atm.

Absolute, gage, and vacuum pressures Actual pressure at a give point is called the absolute pressure. Most pressure-measuring devices are calibrated to read zero in the atmosphere, and therefore indicate gage pressure, Pgage=Pabs - Patm. Pressure below atmospheric pressure are called vacuum pressure, Pvac=Patm - Pabs.

Absolute, gage, and vacuum pressures

Pressure at a Point Pressure at any point in a fluid is the same in all directions. Pressure has a magnitude, but not a specific direction, and thus it is a scalar quantity.

Variation of Pressure with Depth In the presence of a gravitational field, pressure increases with depth because more fluid rests on deeper layers. To obtain a relation for the variation of pressure with depth, consider rectangular element Force balance in z-direction gives Dividing by Dx and rearranging gives

Variation of Pressure with Depth Pressure in a fluid at rest is independent of the shape of the container. Pressure is the same at all points on a horizontal plane in a given fluid.

Scuba Diving and Hydrostatic Pressure

Scuba Diving and Hydrostatic Pressure Pressure on diver at 100 ft? Danger of emergency ascent? 1 100 ft 2 Boyle’s law If you hold your breath on ascent, your lung volume would increase by a factor of 4, which would result in embolism and/or death.

Pascal’s Law Pressure applied to a confined fluid increases the pressure throughout by the same amount. In picture, pistons are at same height: Ratio A2/A1 is called ideal mechanical advantage

The Manometer An elevation change of Dz in a fluid at rest corresponds to DP/rg. A device based on this is called a manometer. A manometer consists of a U-tube containing one or more fluids such as mercury, water, alcohol, or oil. Heavy fluids such as mercury are used if large pressure differences are anticipated.

Mutlifluid Manometer For multi-fluid systems Pressure change across a fluid column of height h is DP = rgh. Pressure increases downward, and decreases upward. Two points at the same elevation in a continuous fluid are at the same pressure. Pressure can be determined by adding and subtracting rgh terms.

Measuring Pressure Drops Manometers are well--suited to measure pressure drops across valves, pipes, heat exchangers, etc. Relation for pressure drop P1-P2 is obtained by starting at point 1 and adding or subtracting rgh terms until we reach point 2. If fluid in pipe is a gas, r2>>r1 and P1-P2= rgh

The Barometer Atmospheric pressure is measured by a device called a barometer; thus, atmospheric pressure is often referred to as the barometric pressure. PC can be taken to be zero since there is only Hg vapor above point C, and it is very low relative to Patm. Change in atmospheric pressure due to elevation has many effects: Cooking, nose bleeds, engine performance, aircraft performance.

Fluid Statics Fluid Statics deals with problems associated with fluids at rest. In fluid statics, there is no relative motion between adjacent fluid layers. Therefore, there is no shear stress in the fluid trying to deform it. The only stress in fluid statics is normal stress Normal stress is due to pressure Variation of pressure is due only to the weight of the fluid → fluid statics is only relevant in presence of gravity fields. Applications: Floating or submerged bodies, water dams and gates, liquid storage tanks, etc.

Hoover Dam

Hoover Dam

Hoover Dam Example of elevation head z converted to velocity head V2/2g. We'll discuss this in more detail by (Bernoulli equation).

Hydrostatic Forces on Plane Surfaces On a plane surface, the hydrostatic forces form a system of parallel forces For many applications, magnitude and location of application, which is called center of pressure, must be determined. Atmospheric pressure Patm can be neglected when it acts on both sides of the surface.