Branch Outage Simulation for Contingency Studies Dr.Aydogan OZDEMIR, Visiting Associate Professor Department of Electrical Engineering, Texas A&M University,

Slides:



Advertisements
Similar presentations
© 2010 D. Kirschen and The University of Manchester1 New Formulations of the Optimal Power Flow Problem Prof. Daniel Kirschen The University of Manchester.
Advertisements

Electrical and Computer Engineering Mississippi State University
2-1 TSM Base Case Algorithms State Estimation - Abhimanyu Gartia, WRLDC.
ECE 530 – Analysis Techniques for Large-Scale Electrical Systems
ECE 530 – Analysis Techniques for Large-Scale Electrical Systems Prof. Hao Zhu Dept. of Electrical and Computer Engineering University of Illinois at Urbana-Champaign.
Presenter: Raghu Ranganathan ECE / CMR Tennessee Technological University March 22th, 2011 Smart grid seminar series Yao Liu, Peng Ning, and Michael K.
Presented by: Hao Liang
EE 369 POWER SYSTEM ANALYSIS
Javad Lavaei Department of Electrical Engineering Columbia University Various Techniques for Nonlinear Energy-Related Optimizations.
Announcements Be reading Chapter 6, also Chapter 2.4 (Network Equations). HW 5 is 2.38, 6.9, 6.18, 6.30, 6.34, 6.38; do by October 6 but does not need.
System Voltage Planning Brian Moss PD / Transmission Planning Transmission Planning Overview October 30, 2007.
California Independent System Operator Soumen Ghosh CAISO CONFIDENTIAL Created: 06/15/2008 State Estimator for CA ISO Market - Relevance and Readiness.
ECE 333 Renewable Energy Systems Lecture 14: Power Flow Prof. Tom Overbye Dept. of Electrical and Computer Engineering University of Illinois at Urbana-Champaign.
ECE 530 – Analysis Techniques for Large-Scale Electrical Systems Prof. Hao Zhu Dept. of Electrical and Computer Engineering University of Illinois at Urbana-Champaign.
ECE 333 Renewable Energy Systems Lecture 13: Per Unit, Power Flow Prof. Tom Overbye Dept. of Electrical and Computer Engineering University of Illinois.
ECE 530 – Analysis Techniques for Large-Scale Electrical Systems
ECE 530 – Analysis Techniques for Large-Scale Electrical Systems
Announcements Be reading Chapter 3
Lecture 8 Transmission Lines, Transformers, Per Unit Professor Tom Overbye Department of Electrical and Computer Engineering ECE 476 POWER SYSTEM ANALYSIS.
Javad Lavaei Department of Electrical Engineering Columbia University Joint work with Somayeh Sojoudi Convexification of Optimal Power Flow Problem by.
EE 369 POWER SYSTEM ANALYSIS
Efficient Available Transfer Capability Analysis Using Linear Methods
Optimization for Operation of Power Systems with Performance Guarantee
ECE 530 – Analysis Techniques for Large-Scale Electrical Systems
Announcements For lectures 8 to 10 please be reading Chapter 3
Frankfurt (Germany), 6-9 June 2011 Pyeongik Hwang School of Electrical Engineering Seoul National University Korea Hwang – Korea – RIF Session 4a – 0324.
Load Flow Study using Tellegen’s Theorem. Load Flow – The load-flow study is an important tool involving numerical analysis applied to a power system.
Genetic Algorithms Introduction Advanced. Simple Genetic Algorithms: Introduction What is it? In a Nutshell References The Pseudo Code Illustrations Applications.
Announcements Homework #4 is due now Homework 5 is due on Oct 4
1 A New Method for Composite System Annualized Reliability Indices Based on Genetic Algorithms Nader Samaan, Student,IEEE Dr. C. Singh, Fellow, IEEE Department.
ECE 476 Power System Analysis Lecture 11: Ybus, Power Flow Prof. Tom Overbye Dept. of Electrical and Computer Engineering University of Illinois at Urbana-Champaign.
1 Chapter 5: Harmonic Analysis in Frequency and Time Domains Contributors: A. Medina, N. R. Watson, P. Ribeiro, and C. Hatziadoniu Organized by Task Force.
PS ERC 1 Reactive Power Considerations in Linear Load Flow with Applications to Available Transfer Capability Pete Sauer (With a lot of help from Santiago.
Lecture 13 Newton-Raphson Power Flow Professor Tom Overbye Department of Electrical and Computer Engineering ECE 476 POWER SYSTEM ANALYSIS.
Lecture 11 Power Flow Professor Tom Overbye Special Guest Appearance by Professor Sauer! Department of Electrical and Computer Engineering ECE 476 POWER.
ECE 476 Power System Analysis Lecture 14: Power Flow Prof. Tom Overbye Dept. of Electrical and Computer Engineering University of Illinois at Urbana-Champaign.
ECE 530 – Analysis Techniques for Large-Scale Electrical Systems
Announcements Homework 8 is 11.19, 11.21, 11.26, 11.27, due now
ECE 476 Power System Analysis Lecture 13: Power Flow Prof. Tom Overbye Dept. of Electrical and Computer Engineering University of Illinois at Urbana-Champaign.
ECE 530 – Analysis Techniques for Large-Scale Electrical Systems Prof. Hao Zhu Dept. of Electrical and Computer Engineering University of Illinois at Urbana-Champaign.
ECE 530 – Analysis Techniques for Large-Scale Electrical Systems Prof. Hao Zhu Dept. of Electrical and Computer Engineering University of Illinois at Urbana-Champaign.
ECE 530 – Analysis Techniques for Large-Scale Electrical Systems Prof. Hao Zhu Dept. of Electrical and Computer Engineering University of Illinois at Urbana-Champaign.
ECE 530 – Analysis Techniques for Large-Scale Electrical Systems Prof. Hao Zhu Special thanks to Dr. Kai Van Horn Dept. of Electrical and Computer Engineering.
ECE 530 – Analysis Techniques for Large-Scale Electrical Systems Prof. Hao Zhu Dept. of Electrical and Computer Engineering University of Illinois at Urbana-Champaign.
ELEN 3441 Fundamentals of Power Engineering Spring Lecture 10: Power-Flow studies Instructor: Dr. Gleb V. Tcheslavski Contact:
Power System Protective Relaying-Part One
Lecture 14 Power Flow Professor Tom Overbye Department of Electrical and Computer Engineering ECE 476 POWER SYSTEM ANALYSIS.
Lecture 10 Transformers, Load & Generator Models, YBus Professor Tom Overbye Department of Electrical and Computer Engineering ECE 476 POWER SYSTEM ANALYSIS.
Announcements Please read Chapter 6
Announcements Homework 7 is 6.46, 6.49, 6.52, 11.19, 11.21, 11.27; due date is October 30 Potential spring courses: ECE 431 and ECE 398RES (Renewable Electric.
ECE 476 POWER SYSTEM ANALYSIS
ECE 476 POWER SYSTEM ANALYSIS
ECEN 460 Power System Operation and Control
ECEN 460 Power System Operation and Control
Prepared by Viren Pandya
ECE 476 POWER SYSTEM ANALYSIS
Load flow solutions Chapter (3).
ECE 476 POWER SYSTEM ANALYSIS
ECE 476 POWER SYSTEM ANALYSIS
ECEN 460 Power System Operation and Control
ECEN 460 Power System Operation and Control
Load Flow Studies Eng. Edvan Moyo BEng, MEng, MBA
DEC System Voltage Planning - June 2018
ECE 333 Green Electric Energy
ECEN 460 Power System Operation and Control
ECEN 460 Power System Operation and Control
ECE 576 Power System Dynamics and Stability
ECEN 615 Methods of Electric Power Systems Analysis
M. Kezunovic (P.I.) S. S. Luo D. Ristanovic Texas A&M University
ECEN 460 Power System Operation and Control
Presentation transcript:

Branch Outage Simulation for Contingency Studies Dr.Aydogan OZDEMIR, Visiting Associate Professor Department of Electrical Engineering, Texas A&M University, College Station TX Tel : (979) , Fax : (979)

Aydoğan Özdemir was born in Artvin, Turkey, on January He received the B.Sc., M.Sc. and Ph.D. degrees in Electrical Engineering from Istanbul Technical University, Istanbul, Turkey in 1980, 1982 and 1990, respectively. He is an associate professor at the same University. His current research interests are in the area of electric power system with emphasis on reliability analysis, modern tools (neural networks, fuzzy logic, genetic algorithms etc.) for power system modeling, analysis and control and high-voltage engineering. He is a member of National Chamber of Turkish Electrical Engineering and IEEE.

Outages of component(s) Overstress on the other components No limit violation limit violation(s) operation of protective devices and switching of the unit(s) partial or total loss of load Power System Security Power system security is the ability of the system to withstand one or more component outages with the minimal disruption of service or its quality.

POWER SYSTEM SECURITY monitoring contingency analysis security constrained opf Monitoring : Data collection and state estimation The objective of steady state contingency analysis is to investigate the effects of generation and transmission unit outages on MW line flows and bus voltage magnitudes.

START SET SYSTEM MODEL TO INITIAL CONDITIONS SIMULATE AN OUTAGE OF A GENERATOR OR A BRANCH LIMIT VIOLATION Y ALARM MESSAGE LAST OUTAGE Y END N N SELECT A NEW OUTAGE

Real-time applications require fast and reliable computation methods due to the high number of possible outages in a moderate power system. However, there is a well-known conflict between the accuracy of the method applied and the calculation speed. Exact solution Full AC power flow for each outage Check the limit violations not feasible for real-time applications. real-time applications approximate methods to quickly identify conceivable contingencies AC power flows only for critical contingencies. Check the limit violations

APPROXIMATE CONTINGENCY ANALYSIS Contingency ranking contingencies are ranked in an approximate order of a scalar performance index, PI. contingencies are tested beginning with the most severe one and proceeding down to the less severe ones up to a threshold value. Masking effect causes false orderings and misclassifications. Contingency screeningExplicit contingency screening is performed for all contingencies, following an approximate solution (DC load flow, one iteration load flow, linear distribution or sensitivity factors etc.) Contingency screening is performed in the near vicinity of the outages (local solutions) Hybrid methods utilizing both the ranking and the screening

outage of a branch or a generation unit MW line flow overloadsvoltage magnitude violations both involves more complicated models and better computation algorithms DC load flows Sensitivity factors

LINE OUTAGE SIMULATION An outage of a line can either be simulated by setting its impedance, y ij = 0 or by injecting hypothetical powers at both ends of the line. The latter method is preferred to preserve the original base case bus admittance matrix. S ji =0 S ij =0 i j j i j i Z-Matrix techniques Modification of Z BUS is required for each outage Determination of the hypothetical sources so that all the reactive power circulates through the outaged line while maintaining the same voltage magnitude changes in the system

SIMULATION FOR MW LINE FLOW PROBLEM DC LOAD FLOW : outage of a line connected between busses i and j  The new real power flow through the line connected between busses n and m can be derived and approximated as, See “Power Generation, Operation and Control by Wood and Wollenberg” for details

SIMULATION FOR VOLTAGE MAGNITUDE PROBLEM Linear models are not sufficient for most outages Reactive power flows can not be isolated from bus voltage phase angles Involves more complicated models and better computation algorithms Q ij j i Q ji Can be split up into two parts, Transferring reactive power assumed to flow through the line Loss reactive power assumed to allocated at the busses

Line outage simulation by hypothetical reactive power sources j i For a tap changing transformer, cross flow through the equivalent impedance is considered to be the transferring reactive power, where shunt flows can be considered as the loss reactive powers. b ij bus i bus j b ij bus i bus j Transferring reactive power is sensitive both to bus voltage magnitudes and bus voltage phase angles. However, loss reactive power is dominantly determined by bus voltage phase angles and has a weak coupling with bus voltage magnitudes. Therefore, transferring reactive powers are enough for a reasonable accuracy.

Hypothetical reactive power injections to bus i and bus j, will result in a change in net reactive bus powers  Q i and  Q j. This in turn, will result in a change in system state variables with respect to pre-outage values. This change must be equivalent to the changes when the line is outaged. Load bus reactive powers do not satisfy the nodal power balance equation due to the errors in load bus voltage magnitudes calculated from linear models. Therefore, part of the fictitious reactive generation flows through the neighboring paths instead circulating through the outaged branch. These reactive power mismatches can mathematically be expressed as, where Q i and Q Di are the net reactive power and the reactive demand at load bus i, is the complex voltage at bus i and Y ik is the element of bus admittance matrix. The superscript * denotes the conjugate of a complex quantity. Calculated load bus voltage magnitudes need to be modified in a way to minimize the bus reactive power mismatches at both ends of the outaged line. This can be accomplished a local optimization formulation

1. Select an outage of a branch, numbered k and connected between busses i and j. 2. Calculate bus voltage phase angles by using linearized MW flows., l=2,3,…, NB where X is the inverse of the bus suseptance matrix, P ij is the pre-outage active power flow through the line and x k is the reactance of the line. 3. Calculate intermediate loss reactive powers, 4. Minimize reactive power mismatches at busses i and j, while satisfying linear reactive power flow equations. Mathematically, this corresponds to a constrained optimization process as, reactive power flows through the outaged line

SOLUTION OF THE CONSTRAINED OPTIMIZATION PROBLEM After having formulated the outage simulation as a constrained optimization problem, minimization can be achieved by solution of the partial differential equations of the augmented Lagrangian function with respect to. Note that V does not need to include all the load bus voltage magnitudes; instead only busses i, j and their first order neighbors are enough for optimization cycle. Drawback : Convergence to local maximum Single direction search

SOLUTION BY GENETIC ALGORITHMS Evolutionary algorithms are stochastic search methods that mimic the metaphor of natural biological evolution. Genetic Algorithms (GAs) are perhaps the most widely known types of evolutionary computation methods today. GAs operate on a population of potential solutions applying the principle of survival of the fittest procedure better and better approximation to a solution. At each generation, a new set of better approximations is created by selecting individuals according to their fitness in the problem domain. This process leads to the evolution of populations of individuals that are better suited to their environment than the individuals that they were created from. Y N result optimization criteria met Generate initial population evaluate objective function best individuals GENERATE NEW POPULATION crossover mutation selection For the details of the processes see “Cheng, Genetic Algorithms&Engineering Optimization by M. Gen, R., New York: Wiley, 2000 “. Such a single population GA is powerful and performs well on a broad class of optimization problems.

bounded network j i outaged branch BASE CASE LOAD FLOW SELECT AN OUTAGE CALCULATE BUS VOLTAGE PHASE ANGLES CALCULATE THE REMAINING QUANTITIES END

NUMERICAL EXAMPLES IEEE 14-Bus test System Base case control variables : P G2 = 0.4 p.u. P G3 = P G6 = P G8 = 0.0 p.u. V 1 = 1.06 p.u. V 2 = p.u. V 3 = 1.01 p.u. V 6 = 1.07 p.u. V 8 = 1.09 p.u. B 9 = 0.19 p.u. t 4-7 = t 4-9 = t 5-6 = Q 7-9 = Mvar Q 5-6 = MVar

Post-outage reactive power flows for IEEE-14 Bus Test Systems

IEEE 57-Bus Test System

First one is the outage of the line connected between bus-12 and bus-13, whose pre- outage reactive power flow is Mvar. Second case is the outage of a transformer with turns ratio connected between bus-13 and bus-49, whose pre-outage reactive power flows is 33.7 Mvar. Post-Outage Voltage Magnitudes for outage of the line connected between bus 12 and bus