Igor V. Moskalenko (Stanford U.) Challenges in Astrophysics of CR (knee--) & γ-rays Topics covered:  Intro to the relevant physics  Modeling of the CR.

Slides:



Advertisements
Similar presentations
Fermi LAT Observations of Galactic and Extragalactic Diffuse Emission Jean-Marc Casandjian, on behalf of the Fermi LAT collaboration 7 questions addressed.
Advertisements

The Galactic diffuse emission Sabrina Casanova, MPIK Heidelberg XXth RENCONTRES DE BLOIS 18th - 23rd May 2008, Blois.
Combined Energy Spectra of Flux and Anisotropy Identifying Anisotropic Source Populations of Gamma-rays or Neutrinos Sheldon Campbell The Ohio State University.
Observations of the isotropic diffuse gamma-ray emission with the Fermi Large Area Telescope Markus Ackermann SLAC National Accelerator Laboratory on behalf.
Implication of recent cosmic ray data Qiang Yuan Institute of High Energy Physics Collaborated with Xiaojun Bi, Hong Li, Jie Liu, Bing Zhang & Xinmin Zhang.
Fermi-LAT Study of Cosmic-Ray Gradient in the Outer Galaxy --- Fermi-LAT view of the 3 rd Quadrant --- Tsunefumi Mizuno (Hiroshima Univ.), Luigi Tibaldo.
Eiichiro Komatsu University of Texas at Austin A&M, May 18, 2007
Testing astrophysical models for the PAMELA positron excess with cosmic ray nuclei Philipp Mertsch Rudolf Peierls Centre for Theoretical Physics, University.
Galactic Diffuse Gamma-ray Emission, the EGRET Model, and GLAST Science Stanley D. Hunter NASA/GSFC Code 661
Diffuse Gamma-Ray Emission Su Yang Telescopes Examples Our work.
SLAC, June 23 rd Dark Matter in Galactic Gamma Rays Marcus Ziegler Santa Cruz Institute for Particle Physics Gamma-ray Large Area Space Telescope.
Igor V. Moskalenko NASA Goddard Space Flight Center with Andy W. StrongStepan G. Mashnik Andy W. Strong (MPE, Germany) & Stepan.
Potential Positron Sources around Galactic Center Department of Physics National Tsing Hua University G.T. Chen 2007/11/29.
The positron excess and supersymmetric dark matter Joakim Edsjö Stockholm University
Igor V. Moskalenko (Stanford) with S. Digel (SLAC) T. Porter (UCSC) O. Reimer (Stanford) O. Reimer (Stanford) A. W. Strong (MPE) A. W. Strong (MPE) Diffuse.
Simulating the Gamma Ray Sky Andrew McLeod SASS August 12, 2009.
Igor V. Moskalenko (Stanford) Challenges in Astrophysics of CR (knee--) & γ-rays  Intro to the relevant physics  Some of the challenges…  Modeling of.
Igor V. Moskalenko (Stanford) GALPROP Model for Galactic CR propagation and diffuse γ -ray emission.
The 511 keV Annihilation Emission From The Galactic Center Department of Physics National Tsing Hua University G.T. Chen 2007/1/2.
Igor V. Moskalenko & Andy W. Strong NASA/GSFC MPE, Germany with Olaf Reimer Bochum, Germany Topics to cover: GALPROP: principles, internal structure, recent.
Cosmic Rays Discovery of cosmic rays Local measurements Gamma-ray sky (and radio sky) Origin of cosmic rays.
Igor V. Moskalenko (Stanford U.) with A.Strong (MPE), S.Digel (SLAC), T.Porter (USCS), O.Reimer (SU) Modeling of the Galactic diffuse continuum γ-ray emission.
Quintessino model and neutralino annihilation to diffuse gamma rays X.J. Bi (IHEP)
Potential Neutrino Signals from Galactic  -Ray Sources Alexander Kappes, Christian Stegmann University Erlangen-Nuremberg Felix Aharonian, Jim Hinton.
HEAD 2010 – Mar.3, 2010 :: IVM/Stanford-KIPAC 1IVM/Stanford-KIPAC 1 PAMELA Workshop, Rome/May 12, 2009 Igor V. Moskalenko (stanford/kipac) Leptons in Cosmic.
High-energy electrons, pulsars, and dark matter Martin Pohl.
Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata 1 Report from Italy A. Morselli, A. Lionetto, A. Cesarini, F.Fucito, P.Ullio* INFN,
Overview of indirect dark matter detection Jae Ho HEO Theoretical High Energy group Yonsei University 2012 Jindo Workshop, Sep
Dark Matter Particle Physics View Dmitri Kazakov JINR/ITEP Outline DM candidates Direct DM Search Indirect DM Search Possible Manifestations DM Profile.
Lake Louise - February Detection & Measurement of gamma rays in the AMS-02 Detector J. Bolmont - LPTA - IN2P3/CNRS Montpellier - France.
Summary of indirect detection of neutralino dark matter Joakim Edsjö Stockholm University
38 th COSPAR, Bremen – July 18, 2010 :: IVM/Stanford-KIPAC 1 Galactic Cosmic Rays Igor V. Moskalenko Stanford & KIPAC Igor V. Moskalenko Stanford & KIPAC.
Figure 5. The LAT and the GLAST spacecraft. GLAST will also carry a gamma-ray burst monitor, the GBM instrument. For more information about GLAST, see.
Tsunefumi Mizuno 1 Fermi_Diffuse_ASJ_2010Mar.ppt Fermi-LAT Study of Galactic Cosmic-Ray Distribution -- CRs in the Outer Galaxy -- Tsunefumi Mizuno Hiroshima.
Observations of the Large Magellanic Cloud with Fermi Jürgen Knödlseder (Centre d’Etude Spatiale des Rayonnements) On behalf of the Fermi/LAT collaboration.
Analysis methods for Milky Way dark matter halo detection Aaron Sander 1, Larry Wai 2, Brian Winer 1, Richard Hughes 1, and Igor Moskalenko 2 1 Department.
The science objectives for CALET Kenji Yoshida (Shibaura Institute of Technology) for the CALET Collaboration.
Tsunefumi Mizuno 1 Fermi_Diffuse_2009Mar.ppt Diffuse Gamma- Rays seen by Fermi- LAT and Cosmic- Ray Distributions Tsunefumi Mizuno Hiroshima Univ. on behalf.
Collider searchIndirect Detection Direct Detection.
MARCH 11YPM 2015  ray from Galactic Center Tanmoy Mondal SRF PRL Dark Matter ?
Diffuse Emission and Unidentified Sources
Propagation of CR electrons and the interpretation of diffuse  rays Andy Strong MPE, Garching GLAST Workshop, Rome, 17 Sept 2003 with Igor Moskalenko.
E.G.Berezhko, L.T. Ksenofontov Yu.G.Shafer Institute of Cosmophysical Research and Aeronomy Yakutsk, Russia Energy spectra of electrons and positrons,
Potential Neutrino Signals from Galactic  -Ray Sources Alexander Kappes, Christian Stegmann University Erlangen-Nuremberg Felix Aharonian, Jim Hinton.
Gamma-ray Measurements of the distribution of Gas and Cosmic Ray in the Interstellar Space Yasushi Fukazawa Hiroshima University.
Multi-wavelength signals of dark matter annihilations in the Galactic diffuse emission (based on MR and P. Ullio, arXiv: )‏ Marco Regis University.
論文紹介 _2010-Jan.ppt Tsunefumi Mizuno 1 Fermi 衛星でみた拡散ガンマ線放射と銀河宇宙線 Tsunefumi Mizuno Hiroshima Univ. June 15, 2009 "Fermi Large Area Telescope Measurements.
Type II Seesaw Portal and PAMELA/Fermi LAT Signals Toshifumi Yamada Sokendai, KEK In collaboration with Ilia Gogoladze, Qaisar Shafi (Univ. of Delaware)
GLAST LAT Project I. MoskalenkoGLAST-for-lunch, Jan Local Group of Galaxies in the EGRET era and perspectives for GLAST Igor V. Moskalenko Stanford.
Ching-Yuan Huang (黄庆元) 20 October 2010
Fermi Gamma-ray Space Telescope Searches for Dark Matter Signals Workshop for Science Writers Introduction S. Ritz UCSC Physics Dept. and SCIPP On behalf.
DARK MATTER Fisica delle Astroparticelle Piergiorgio Picozza a.a
Igor V. Moskalenko (Stanford) with Seth Digel (SLAC) Troy Porter (LSU) Olaf Reimer (Stanford) Olaf Reimer (Stanford) Andrew W. Strong (MPE) Andrew W. Strong.
ISCRA – Erice July 2004 Ana Sofía Torrentó Coello - CIEMAT THE AMS EXPERIMENT Ana Sofía Torrentó Coello – CIEMAT (Spain) On behalf of AMS Collaboration.
Interstellar gamma-rays: first large-scale results from Fermi-LAT Andy Strong on behalf of Fermi-LAT collaboration ICRC Lodz 7-15 July 2009 OG2.1 ID 0390.
Modified from talk of Igor V. Moskalenko (Stanford U.) GALPROP & Modeling the Diffuse  -ray Emission.
Topics on Dark Matter Annihilation
Current work on GALPROP
Dark Matter in Galactic Gamma Rays
Status and issues for the LAT interstellar emission model
High Energy emission from the Galactic Center
Splinter section: Diffuse emission
Particle Acceleration in the Universe
Testing the origin of high- energy cosmic rays
Isotopic abundances of CR sources
Galactic Cosmic-Rays Observed by Fermi-LAT
宇宙線スペクトルと GeV-TeV diffuse-g emission
on behalf of the Fermi-LAT Collaboration
Diffuse Gamma-Rays seen by Fermi Gamma-ray Space Telescope
Presentation transcript:

Igor V. Moskalenko (Stanford U.) Challenges in Astrophysics of CR (knee--) & γ-rays Topics covered:  Intro to the relevant physics  Modeling of the CR propagation and diffuse emission  Perspectives: Pamela, GLAST and other near future missions

Igor V. Moskalenko 2 November 17, 2005Miniworkshop/Rome2, Italy CR Interactions in the Interstellar Medium e + - PHeCNO X,γ gas ISRF e + - π + - P_LiBeB ISM diffusion energy losses energy losses reacceleration reacceleration convection convection etc. etc. π 0 synchrotron IC bremss Chandra GLAST ACE helio-modulation p 42 sigma ( data) HESS Preliminary SNR RX J PSF BHeCNO Flux 20 GeV/n CR species:  Only 1 location  modulation e + - π + - PAMELA BESS AMS

Igor V. Moskalenko 3 November 17, 2005Miniworkshop/Rome2, Italy Elemental Abundances: CR vs. Solar System CR abundances: ACE Solar system abundances LiBeB CNO F Fe ScTiV CrMn Si Cl Al O Volatility Na S Long propagation history…

Igor V. Moskalenko 4 November 17, 2005Miniworkshop/Rome2, Italy Nuclear component in CR: What we can learn? Propagation parameters: Diffusion coeff., halo size, Alfvén speed, convection velosity… Energy markers: Reacceleration, solar modulation Local medium: Local Bubble Material & acceleration sites, nucleosynthesis (r- vs. s-processes) Stable secondaries: Li, Be, B, Sc, Ti, V Radio (t 1/2 ~1 Myr): 10 Be, 26 Al, 36 Cl, 54 Mn K-capture: 37 Ar, 49 V, 51 Cr, 55 Fe, 57 Co Short t 1/2 radio 14 C & heavy Z>30 Heavy Z>30: Cu, Zn, Ga, Ge, Rb Nucleo- synthesis: supernovae, early universe, Big Bang… Solar modulation Diffuse γ-rays Galactic, extragalactic: blazars, relic neutralino Dark Matter (p,đ,e +,γ) -

Igor V. Moskalenko 5 November 17, 2005Miniworkshop/Rome2, Italy Diffuse Galactic Gamma-ray Emission ~80% of total Milky Way luminosity at HE !!! Tracer of CR (p, e − ) interactions in the ISM (π 0,IC,bremss): oStudy of CR species in distant locations (spectra & intensities)  CR acceleration (SNRs, pulsars etc.) and propagation oEmission from local clouds → local CR spectra  CR variations, Solar modulation oMay contain signatures of exotic physics (dark matter etc.)  Cosmology, SUSY, hints for accelerator experiments oBackground for point sources (positions, low latitude sources…) Besides: o“Diffuse” emission from other normal galaxies (M31, LMC, SMC)  Cosmic rays in other galaxies ! oForeground in studies of the extragalactic diffuse emission oExtragalactic diffuse emission (blazars ?) may contain signatures of exotic physics (dark matter, BH evaporation etc.) Calculation requires knowledge of CR (p,e) spectra in the entire Galaxy

Igor V. Moskalenko 6 November 17, 2005Miniworkshop/Rome2, Italy Transport Equations ~90 (no. of CR species) ψ(r,p,t) – ψ(r,p,t) – density per total momentum sources (SNR, nuclear reactions…) convection convection (Galactic wind) diffusion diffusive reacceleration diffusive reacceleration (diffusion in the momentum space) E-loss fragmentation radioactive decay + boundary conditions

Igor V. Moskalenko 7 November 17, 2005Miniworkshop/Rome2, Italy CR Propagation: Milky Way Galaxy Halo Gas, sources 100 pc 40 kpc 4-12 kpc /ccm 1-100/ccm Intergalactic space 1 kpc ~ 3x10 18 cm R Band image of NGC GHz continuum (NVSS), 1,2,…64 mJy/ beam Optical image: Cheng et al. 1992, Brinkman et al Radio contours: Condon et al AJ 115, 1693 NGC891 Sun “Flat halo” model (Ginzburg & Ptuskin 1976)

Igor V. Moskalenko 8 November 17, 2005Miniworkshop/Rome2, Italy A Model of CR Propagation in the Galaxy  Gas distribution (energy losses, π 0, brems)  Interstellar radiation field (IC, e ± energy losses)  Nuclear & particle production cross sections  Gamma-ray production: brems, IC, π 0  Energy losses: ionization, Coulomb, brems, IC, synch  Solve transport equations for all CR species  Fix propagation parameters  “Precise” Astrophysics

Igor V. Moskalenko 9 November 17, 2005Miniworkshop/Rome2, Italy Wherever you look, the GeV  -ray excess is there ! 4a-f EGRET data

Igor V. Moskalenko 10 November 17, 2005Miniworkshop/Rome2, Italy Reacceleration Model vs. Plain Diffusion Plain Diffusion (D xx ~β -3 R 0.6 ) Diffusive Reacceleration B/C ratio Antiproton flux B/C ratio

Igor V. Moskalenko 11 November 17, 2005Miniworkshop/Rome2, Italy Positron Excess ?  Are all the excesses connected somehow ?  A signature of a new physics (DM) ? Caveats:  Systematic errors ?  A local source of primary positrons ?  Large E-losses -> local spectrum… HEAT (Beatty et al. 2004) GALPROP 1 E, GeV 10 e + /e HEAT 2000 HEAT HEAT combined 1 E, GeV 10 Q: Are all the excesses connected? A: “Yes” and “No” Same progenitor (CR p or DM) for pbars, e + ’s, γ’s Systematic errors of different detectors E > 6 GeV

Igor V. Moskalenko 12 November 17, 2005Miniworkshop/Rome2, Italy CR Source Distribution SNR source The CR source (SNRs, pulsars) distribution is too narrow to match the CR distribution in the Galaxy assuming X CO =N(H 2 )/W CO =const (CO is a tracer of H 2 ) Lorimer 2004 Pulsars CR after propagation diffuse γ-ray distribution

Igor V. Moskalenko 13 November 17, 2005Miniworkshop/Rome2, Italy Injection into the ISM Life and death of e + Energy loss Positronium In flight Direct annihilation with bound electrons Radiative Capture Grains Charge Exchange 22 22 22 33 Direct annihilation with free electrons Positronium Thermalisation All sky view of 511 keV emission Knödlseder et al 2005 Positron Annihilation Line W.Gillard INTEGRAL-SPI

Igor V. Moskalenko 14 November 17, 2005Miniworkshop/Rome2, Italy Hypotheses… Provide good agreement with all data (diffuse gammas, pbars, e+)  CR intensity variations  Dark Matter signals Other possibilities: Harder CR spectrum (protons, electrons) – deviates limits from pbars, gamma-ray profiles Influence of the Local Bubble (local component) – helps with pbars, but doesn’t help with diffuse gammas

Igor V. Moskalenko 15 November 17, 2005Miniworkshop/Rome2, Italy Diffuse emission models GeV >0.5 GeV Dark Matter Cosmic Ray Spectral Variations EGRET “GeV Excess” There are two possible BUT fundamentally different explanations of the excess, in terms of exotic and traditional physics:  Dark Matter  CR spectral variations Both have their pros & cons. from Strong et al. ApJ (2004) from de Boer et al. A&A (2005) from Hunter et al. ApJ (1997)

Igor V. Moskalenko 16 November 17, 2005Miniworkshop/Rome2, Italy CR Variations in Space & Time More frequent SN in the spiral arms Historical variations of CR intensity: ~40kyr ( 10 Be in South Polar ice), ~2.8Myr ( 60 Fe in deep sea FeMn crust) Konstantinov et al Electron/positron energy losses Different “collecting” areas A vs. p (σ~30 mb) (different sources ?) SNR number density R, kpc

Igor V. Moskalenko 17 November 17, 2005Miniworkshop/Rome2, Italy Electron Fluctuations/SNR stochastic events GeV electrons 100 TeV electrons GALPROP/Credit S.Swordy Energy losses 10 7 yr 10 6 yr Bremsstrahlung 1 TeV Ionization Coulomb IC, synchrotron 1 GeV Ekin, GeV E(dE/dt) -1,yr Electron energy loss timescale: 1 TeV: ~300 kyr 100 TeV: ~3 kyr

Igor V. Moskalenko 18 November 17, 2005Miniworkshop/Rome2, Italy GeV excess: Optimized/Reaccleration model Uses all sky and antiprotons & gammas to fix the nucleon and electron spectra  Uses antiprotons to fix the intensity of CR HE  Uses gammas to adjust  the nucleon spectrum at LE  the intensity of the CR electrons (uses also synchrotron index)  Uses EGRET data up to 100 GeV protons electrons x4 x1.8 antiprotons E k, GeV

Igor V. Moskalenko 19 November 17, 2005Miniworkshop/Rome2, Italy Secondary e ± are seen in γ-rays ! Lots of new effects ! Improves an agreement at LE brems IC Heliosphere: e + /e~0.2 electrons positrons sec.

Igor V. Moskalenko 20 November 17, 2005Miniworkshop/Rome2, Italy Diffuse Gammas at Different Sky Regions Intermediate latitudes: l=0°-360°,10°<|b|<20° Outer Galaxy: l=90°-270°,|b|<10° Intermediate latitudes: l=0°-360°,20°<|b|<60° Inner Galaxy: l=330°-30°,|b|<5° Hunter et al. region: l=300°-60°,|b|<10° l=40°-100°,|b|<5° corrected Milagro

Igor V. Moskalenko 21 November 17, 2005Miniworkshop/Rome2, Italy Longitude Profiles |b|<5° MeV 2-4 GeV GeV 4-10 GeV

Igor V. Moskalenko 22 November 17, 2005Miniworkshop/Rome2, Italy Latitude Profiles: Inner Galaxy MeV 2-4 GeV0.5-1 GeV 4-10 GeV20-50 GeV

Igor V. Moskalenko 23 November 17, 2005Miniworkshop/Rome2, Italy Latitude Profiles: Outer Galaxy MeV 2-4 GeV GeV 4-10 GeV

Igor V. Moskalenko 24 November 17, 2005Miniworkshop/Rome2, Italy Anisotropic Inverse Compton Scattering  Electrons in the halo see anisotropic radiation  Observer sees mostly head-on collisions e-e- e-e- head-on: large boost & more collisions γ γ small boost & less collisions γ sun Energy density Z, kpc R=4 kpc high latitudes !

Igor V. Moskalenko 25 November 17, 2005Miniworkshop/Rome2, Italy Extragalactic Gamma-Ray Background Predicted vs. observed E, MeV E 2 xF Sreekumar et al Strong et al Elsaesser & Mannheim, astro-ph/ Blazars Cosmological neutralinos EGRB in different directions

Igor V. Moskalenko 26 November 17, 2005Miniworkshop/Rome2, Italy Distribution of CR Sources & Gradient in the CO/H 2 CR distribution from diffuse gammas (Strong & Mattox 1996) SNR distribution (Case & Bhattacharya 1998) sun X CO =N(H 2 )/W CO : Histo –This work, Strong et al.’ Sodroski et al.’95,’97 1.9x Strong & Mattox’96 ~Z -1 – Boselli et al.’02 ~Z Israel’97,’00, [O/H]=0.04,0.07 dex/kpc Pulsar distribution Lorimer 2004

Igor V. Moskalenko 27 November 17, 2005Miniworkshop/Rome2, Italy Again Diffuse Galactic Gamma Rays More IC in the GC – better agreement ! The pulsar distribution vs. R falls too fast OR larger H 2 /CO gradient Very good agreement ! 2-4 GeV

Igor V. Moskalenko 28 November 17, 2005Miniworkshop/Rome2, Italy E.Bloom’05

Igor V. Moskalenko 29 November 17, 2005Miniworkshop/Rome2, Italy Matter, Dark Matter, Dark Energy… Ω ≡ ρ/ρ crit Ω tot =1.02 +/−0.02 Ω Matter =4.4%+/−0.4% Ω DM =23% +/−4% Ω Vacuum =73% +/−4% “Supersymmetry is a mathematically beautiful theory, and would give rise to a very predictive scenario, if it is not broken in an unknown way which unfortunately introduces a large number of unknown parameters…” Lars Bergström (2000) SUSY DM candidate has also other reasons to exist -particle physics…

Igor V. Moskalenko 30 November 17, 2005Miniworkshop/Rome2, Italy Where is the DM ?! Flavors:  Neutrinos ~ visible matter  Super-heavy relics: “wimpzillas”  Axions  Topological objects “Q-balls” Neutralino-like, KK-like Places: Galactic halo, Galactic center  The sun and the Earth Tools:  Direct searches –low-background experiments (DAMA, EDELWEISS) –neutrino detectors (AMANDA/IceCUBE) –Accelerators (LHC) Indirect searches –CR, γ’s (PAMELA,GLAST,BESS) from E.Bloom presentation

Igor V. Moskalenko 31 November 17, 2005Miniworkshop/Rome2, Italy Example “Global Fit:” diffuse γ’s, pbars, positrons  Look at the combined (pbar,e +,γ) data  Possibility of a successful “global fit” can not be excluded -non-trivial ! pbars e+e+ γ GALPROP/W. de Boer et al. hep-ph/ Supersymmetry:  MSSM (DarkSUSY)  Lightest neutralino χ 0  m χ ≈ GeV  S=½ Majorana particles  χ 0 χ 0 −> p, pbar, e +, e −, γ

Igor V. Moskalenko 32 November 17, 2005Miniworkshop/Rome2, Italy Longitude and Latitude Distr. E >0.5 GeV In the plane (± 5 0 in lat.) Out of the plane (± 30 0 in long.. )

Igor V. Moskalenko 33 November 17, 2005Miniworkshop/Rome2, Italy x y z 2003, Ibata et al, Yanny et al. Outer Ring Inner Ring DM halo disk bulge Rotation Curve xy xz xy xz Expected Profile (NFW) Halo profile Isothermal Profile v 2  M/r=cons. and  M/r 3  1/r 2 for const. rotation curve Observed Profile: EGRET data + GALPROP Executive Summary –de Boer et al. astro-ph/

Page Number PAMELA: Secondary to Primary ratios plots: M.Simon  LE: sec/prim peak: one instrument -no cross calibration errors  HE: D xx (R)

Igor V. Moskalenko 35 November 17, 2005Miniworkshop/Rome2, Italy PAMELA positrons  A factor of 2 will become statistically significant  Measuring absolute flux not ratio  Solar minimum conditions After 3 years

Igor V. Moskalenko 36 November 17, 2005Miniworkshop/Rome2, Italy PAMELA antiprotons After 3 years

Igor V. Moskalenko 37 November 17, 2005Miniworkshop/Rome2, Italy DM in Diffuse γ-rays: Spectral Signature Ullio et al.2002 Smoking gun! GLAST LAT

Igor V. Moskalenko 38 November 17, 2005Miniworkshop/Rome2, Italy Pohl et al.2003 sun Positions of the local clouds The Excess: Clues from the Local Medium Digel et al.2001 Observations of the local medium in different directions, e.g. local clouds, will provide a clue to the origin of the excess (assuming it exists). Inconclusive based on EGRET data YesNo Poor knowledge of π 0 -production cross section: better understanding of π 0 -production Dark Matter signal: look for spectral signatures in cosmic rays (PAMELA, BESS, AMS) and in collider experiments (LHC) Possibility: cosmic-ray spectral variations. Further test: look at more distant clouds Will GLAST see the excess? EGRET data

Igor V. Moskalenko 39 November 17, 2005Miniworkshop/Rome2, Italy

Igor V. Moskalenko 40 November 17, 2005Miniworkshop/Rome2, Italy σ σ

Igor V. Moskalenko 41 November 17, 2005Miniworkshop/Rome2, Italy A.Morselli

Igor V. Moskalenko 42 November 17, 2005Miniworkshop/Rome2, Italy GLAST LAT simulations EGRET intensity (>100 MeV) LAT simulation (>100 MeV) |b| < 20° Seth Digel

Igor V. Moskalenko 43 November 17, 2005Miniworkshop/Rome2, Italy GLAST LAT: The Gamma-Ray Sky EGRET (>100 MeV) Simulated LAT (>100 MeV, 1 yr) Simulated LAT (>1 GeV, 1 yr) This is an animation that steps from 1. EGRET (>100 MeV), to 2. LAT (>100 MeV), to 3. LAT (>1 GeV) Seth Digel

Igor V. Moskalenko 44 November 17, 2005Miniworkshop/Rome2, Italy Conclusions I Accurate measurements of nuclear species in CR, secondary positrons, antiprotons, and diffuse γ-rays simultaneously may provide a new vital information for Astrophysics – in broad sense, Particle Physics, and Cosmology. Gamma rays: GLAST is scheduled to launch in 2007 – diffuse gamma rays is one of its priority goals CR species: New measurements at LE & HE simultaneously (PAMELA, Super-TIGER, AMS…) Hunter et al. region: l=300°-60°,|b|<10° Dark Matter Z h increase Be 10 /Be 9 E k, MeV/nucleon B/C E k, MeV/nucleon

Igor V. Moskalenko 45 November 17, 2005Miniworkshop/Rome2, Italy Conclusions II Antiprotons: PAMELA (2006), AMS (2008) and a new BESS- polar instrument to fly a long- duration balloon mission (in 2004, 2006…), we thus will have more accurate and restrictive antiproton data HE electrons: Several missions are planned to target specifically HE electrons In few years we may expect major breakthroughs in Astrophysics and Particle Physics ! CERN Large Hadronic Collider – will address SUSY Positrons: PAMELA (2006), AMS (2008): accurate and restrictive positron data

Igor V. Moskalenko 46 November 17, 2005Miniworkshop/Rome2, Italy Thank you !