Use the 3 ratios – sin, cos and tan to solve application problems. Solving Word Problems Choose the easiest ratio(s) to use based on what information you.

Slides:



Advertisements
Similar presentations
Angles of Elevation and Depression
Advertisements

Jeopardy Trig ratios Finding a missing side Finding a missing angle Sec, csc, and cot Word Problems
Right Triangle Trigonometry
Review Homework.
The Trigonometric Functions we will be looking at SINE COSINE TANGENT.
Problem Solving with Right Triangles
Chapter 9. COMPLETE THE RATIO: Tan x = _____ x.
Application of Trigonometry Angles of Elevation and Depression
Applications Using Trigonometry Angles of Elevation and Depression.
 Old stuff will be used in this section › Triangle Sum Theorem  The sum of the measures of the angles in a triangle is 180° › Pythagorean Theorem 
Trigonometry and Angles of Elevation and Depression CHAPTER 8.4 AND 8.5.
Jeopardy Trig fractions Solving For Angles Solving for Sides Words are Problems?! Other Right Stuff $100 $200 $300 $400 $500 $100 $200 $300 $400 $500.
Geometry 8.5 STEPS to Solving Trig WORD PROBLEMS 1. Make a DRAWING.
Daily Check For the triangle at the right, find the sine, cosine, and tangent of angle z.
Section 9-3 Angles of Elevation and Depression SPI 32F: determine the trigonometric ratio for a right triangle needed to solve a real-world problem given.
Chapter 6: Trigonometry 6.2: Trigonometric Applications
 In a right triangle, the trigonometric ratios are as follows:  A way to help remember this is: › SOH-CAH-TOA.
Word Problems for Right Triangle Trig. Angle of Elevation: The angle above the horizontal that an observer must look at to see an object that is higher.
9.6 Use Trig Ratios to Solve Word Problems
Trig Ratios and Cofunction Relationships. Trig Ratios SOH-CAH-TOA.
Math III Accelerated Chapter 13 Trigonometric Ratios and Functions 1.
Geometry tan A === opposite adjacent BC AC tan B === opposite adjacent AC BC Write the tangent ratios for A and B. Lesson 8-3 The Tangent Ratio.
Objective: To use the sine, cosine, and tangent ratios to determine missing side lengths in a right triangle. Right Triangle Trigonometry Sections 9.1.
Use the 3 ratios – sin, cos and tan to solve application problems. Solving Word Problems Choose the easiest ratio(s) to use based on what information you.
Short Leg:Long Leg:Hypotenuse Right Triangle This is our reference triangle for the triangle. We will use a reference triangle.
Warm up Find the missing side.. Skills Check CCGPS Geometry Applications of Right Triangle Trigonometry.
© 2010 Pearson Prentice Hall. All rights reserved. CHAPTER 10 Geometry.
1. From a point 80m from the base of a tower, the angle of elevation is 28˚. How tall is the tower? x 28˚ 80 Using the 28˚ angle as a reference, we know.
5.8 Problem Solving with Right Triangles Angle of elevation horizontal line of sight Angle of depression line of sight.
1. 2. Find. S O H C A H T O A Sin = Cos = Tan =
Right Triangle Trig Applications Angles of Elevation and Depression Dr. Shildneck Fall, 2014.
Lesson 9-3: Angles of Elevation & Depression Angle of depression Angle of elevation Height Horizontal.
Warm Up 1. Identify the pairs of alternate interior angles. 2 and 7; 3 and 6.
Daily Check Find the measure of the missing side and hypotenuse for the triangle.
9.5: Trigonometric Ratios. Vocabulary Trigonometric Ratio: the ratio of the lengths of two sides of a right triangle Angle of elevation: the angle that.
TRIGONOMETRIC RATIOS The Trigonometric Functions we will be looking at SINE COSINE TANGENT.
PreCalculus 7-R Unit 7 Trigonometric Graphs Review Problems.
6.2 Trig of Right Triangles Part 2. Hypotenuse Opposite Adjacent.
6.2 Trig of Right Triangles Part 1. Hypotenuse Opposite Adjacent.
Right Triangle Trigonometry A B C SOHCAHTOA. Geometry - earth measurement Trigonometry - triangle measurement Sine of an angle = Opposite leg Hypotenuse.
$1 Million $500,000 $250,000 $125,000 $64,000 $32,000 $16,000 $8,000 $4,000 $2,000 $1,000 $500 $300 $200 $100 Welcome.
Lesson 7-6 Application of Trigonometry Angles of Elevation and Depression.
Solving Word Problems Use the 3 ratios – sin, cos and tan to solve application problems. Choose the easiest ratio(s) to use based on what information you.
The Trigonometric Functions we will be looking at
Warm Up Find the missing side. 67o 10 x.
Objectives Use trigonometry to solve problems involving angle of elevation and angle of depression.
10.3 Solving Right Triangles
8-5 Angles of Elevation and Depression
UNIT QUESTION: What patterns can I find in right triangles?
Right Triangles Trigonometry
Applications of Right Triangles
Do Now: 2. If tan (
Warm Up Find the missing side length Find the missing angle 55°
CHAPTER 10 Geometry.
Hypotenuse hypotenuse opposite opposite adjacent adjacent.
Secondary Math II 9.5 Applications.
Warm Up Grab the worksheet on the ChromeBook cart and begin working on it with your table group.
Application of Trigonometry Angles of Elevation and Depression
Application of Trigonometry Angles of Elevation and Depression
Trig Ratios C 5 2 A M Don’t forget the Pythagorean Theorem
Right Triangle Trig Applications
Objective Solve problems involving angles of elevation and angles of depression.
Warm up Find the missing side.
Angles of Elevation and Depression
Application of Trigonometry Angles of Elevation and Depression
Right Triangle Trig Applications
Solving Word Problems Use the 3 ratios – sin, cos and tan to solve application problems. Choose the easiest ratio(s) to use based on what information.
Warm up Find the missing side.
Application of Trigonometry Angles of Elevation and Depression
Depression and Elevation
Presentation transcript:

Use the 3 ratios – sin, cos and tan to solve application problems. Solving Word Problems Choose the easiest ratio(s) to use based on what information you are given in the problem.

Depression and Elevation If a person on the ground looks up to the top of a building, the angle formed between the line of sight and the horizontal is called the angle of elevation. If a person standing on the top of a building looks down at a car on the ground, the angle formed between the line of sight and the horizontal is called the angle of depression. horizontal line of sight horizontal angle of elevation angle of depression

Angle of Elevation/Depression Balloon You Angle of depression Angle of elevation Sometimes when we use right triangles to model real-life situations, we use the terms angle of elevation and angle of depression. If you are standing on the ground and looking up at a hot air balloon, the angle that you look up from ground level is called the angle of elevation. If someone is in the hot air balloon and looks down to the ground to see you, the angle that they have to lower their eyes, from looking straight ahead, is called the angle of depression.

Angle of Elevation/Depression If you look up 15º to see the balloon, then the person in the balloon has to look down 15º to see you on the ground. Notice that in this situation, the one of the legs that forms the right angle is also the height of the balloon. Angle of elevation = Angle of depression. Balloon You Angle of depression = 15º Angle of elevation= 15º

1. From a point 80m from the base of a tower, the angle of elevation is 28˚. How tall is the tower? ˚ x Using the 28˚ angle as a reference, we know opposite and adjacent sides. Use tan 28˚ = 80 (tan 28˚) = x 80 (.5317) = x x ≈ 42.5 About 43 m tan

2. A ladder that is 20 ft is leaning against the side of a building. If the angle formed between the ladder and ground is 75˚, how far will Coach Jarvis have to crawl to get to the front door when he falls off the ladder (assuming he falls to the base of the ladder)? ladder building 20 x 75˚ Using the 75˚ angle as a reference, we know hypotenuse and adjacent side. Use cos 75˚ = 20 (cos 75˚) = x 20 (.2588) = x x ≈ 5.2 About 5 ft. cos

3. When the sun is 62˚ above the horizon, a building casts a shadow 18m long. How tall is the building? x 18 shadow 62˚ Using the 62˚ angle as a reference, we know opposite and adjacent side. Use tan 62˚ = 18 (tan 62˚) = x 18 (1.8807) = x x ≈ 33.9 About 34 m tan

4. A kite is flying at an angle of elevation of about 55˚. Ignoring the sag in the string, find the height of the kite if 85m of string have been let out. string 85 x 55˚ kite Using the 55˚ angle as a reference, we know hypotenuse and opposite side. Use sin 55˚ = 85 (sin 55˚) = x 85 (.8192) = x x ≈ 69.6 About 70 m sin

5. A 5.50 foot person standing 10 feet from a street light casts a 24 foot shadow. What is the height of the streetlight? shadow x˚ tan x˚ = x° ≈ 21.45° About 9 ft. 10

6. The angle of depression from the top of a tower to a boulder on the ground is 38º. If the tower is 25m high, how far from the base of the tower is the boulder? 25 x angle of depression 38º Using the 38˚ angle as a reference, we know opposite and adjacent side. Use tan 38˚ = 25/x (.7813) = 25/x X = 25/.7813 x ≈ 32.0 About 32 m tan Alternate Interior Angles are congruent