Routing in Poisson small-world networks A. J. Ganesh Microsoft Research, Cambridge Joint work with Moez Draief.

Slides:



Advertisements
Similar presentations
Peer-to-Peer and Social Networks Power law graphs Small world graphs.
Advertisements

Complex Networks Advanced Computer Networks: Part1.
By Jon Kleinberg Bo Young Kim Applied Algorithm Lab.
The Theory of Zeta Graphs with an Application to Random Networks Christopher Ré Stanford.
The Small World Phenomenon: An Algorithmic Perspective Speaker: Bradford Greening, Jr. Rutgers University – Camden.
1 Analyzing Kleinberg’s Small-world Model Chip Martel and Van Nguyen Computer Science Department; University of California at Davis.
Small-world networks.
Secure connectivity of wireless sensor networks Ayalvadi Ganesh University of Bristol Joint work with Santhana Krishnan and D. Manjunath.
It’s a Small World by Jamie Luo. Introduction Small World Networks and their place in Network Theory An application of a 1D small world network to model.
Online Social Networks and Media Navigation in a small world.
Rumors and Routes Rajmohan Rajaraman Northeastern University, Boston May 2012 Chennai Network Optimization WorkshopRumors and Routes1.
Lookup in Small Worlds -- A Survey -- Pierre Fraigniaud CNRS, U. Paris Sud.
Social Networks 101 P ROF. J ASON H ARTLINE AND P ROF. N ICOLE I MMORLICA.
Information Networks Small World Networks Lecture 5.
Advanced Topics in Data Mining Special focus: Social Networks.
The Small World Phenomenon Abhijit Mahabal. The Kevin Bacon Game
Lecture 7 CS 728 Searchable Networks. Errata: Differences between Copying and Preferential Attachment In generative model: let p k be fraction of nodes.
CS 599: Social Media Analysis University of Southern California1 The Basics of Network Analysis Kristina Lerman University of Southern California.
Small-World Graphs for High Performance Networking Reem Alshahrani Kent State University.
Small Worlds Presented by Geetha Akula For the Faculty of Department of Computer Science, CALSTATE LA. On 8 th June 07.
Social Networks 101 P ROF. J ASON H ARTLINE AND P ROF. N ICOLE I MMORLICA.
1 Analyzing Kleinberg’s (and other) Small-world Models Chip Martel and Van Nguyen Computer Science Department; University of California at Davis.
CSE 522 – Algorithmic and Economic Aspects of the Internet Instructors: Nicole Immorlica Mohammad Mahdian.
Advanced Topics in Data Mining Special focus: Social Networks.
Analysis of Social Information Networks Thursday January 27 th, Lecture 2: Algorithmic Small World 1.
The Small World Phenomenon: An Algorithmic Perspective by Anton Karatoun.
1 Algorithms for Large Data Sets Ziv Bar-Yossef Lecture 7 May 14, 2006
1 Analyzing Kleinberg’s (and other) Small-world Models Chip Martel and Van Nguyen Computer Science Department; University of California at Davis.
It’s a Small World After All Kim Dressel - The small world phenomenon Please hold applause until the end of the presentation. Angie Heimkes Eric Larson.
(Social) Networks Analysis III Prof. Dr. Daning Hu Department of Informatics University of Zurich Oct 16th, 2012.
Topic 13 Network Models Credits: C. Faloutsos and J. Leskovec Tutorial
The Science of Networks 6.1 Overview Social Goal. Explain why information and disease spread so quickly in social networks. Mathematical Approach. Model.
Proof of Kleinberg’s small-world theorems
Small World Social Networks With slides from Jon Kleinberg, David Liben-Nowell, and Daniel Bilar.
Small-world networks. What is it? Everyone talks about the small world phenomenon, but truly what is it? There are three landmark papers: Stanley Milgram.
Using the Small-World Model to Improve Freenet Performance Hui Zhang Ashish Goel Ramesh Govindan USC.
Searching via Your Neighbor’s Neighbor: The Power of Lookahead in P2P Networks Moni Naor Udi Wieder The Weizmann Institute of Science Gurmeet Manku Stanford.
Hot Topics in Peer-to-Peer Computing (HOT-P2P 2004) Volendam 08 October 2004 Non-uniform deterministic routing on F-Chord(  ) Gennaro Cordasco, Luisa.
1 Oblivious Routing in Wireless networks Costas Busch Rensselaer Polytechnic Institute Joint work with: Malik Magdon-Ismail and Jing Xi.
1 Oblivious Routing in Wireless networks Costas Busch Rensselaer Polytechnic Institute Joint work with: Malik Magdon-Ismail and Jing Xi.
COLOR TEST COLOR TEST. Social Networks: Structure and Impact N ICOLE I MMORLICA, N ORTHWESTERN U.
Gennaro Cordasco - How Much Independent Should Individual Contacts be to Form a Small-World? - 19/12/2006 How Much Independent Should Individual Contacts.
Online Social Networks and Media
3. SMALL WORLDS The Watts-Strogatz model. Watts-Strogatz, Nature 1998 Small world: the average shortest path length in a real network is small Six degrees.
Navigation in small worlds Social Networks: Models and Applications Seminar Toronto, Fall 2007 (based on a presentation by Stratis Ioannidis)
The new protocol of freenet Taken from Ian Clarke and Oskar Sandberg (The Freenet Project)
Complex Network Theory – An Introduction Niloy Ganguly.
1 Analyzing and Characterizing Small-World Graphs Van Nguyen and Chip Martel Computer Science, UC Davis.
Complex Network Theory – An Introduction Niloy Ganguly.
Most of contents are provided by the website Network Models TJTSD66: Advanced Topics in Social Media (Social.
Small World Social Networks With slides from Jon Kleinberg, David Liben-Nowell, and Daniel Bilar.
Performance Evaluation Lecture 1: Complex Networks Giovanni Neglia INRIA – EPI Maestro 10 December 2012.
Analyzing Networks. Milgram’s Experiments “Six degrees of Separation” Milgram’s letters to various recruits in Nebraska who were asked to forward the.
Models and Algorithms for Complex Networks
Class 4: It’s a Small World After All Network Science: Small World February 2012 Dr. Baruch Barzel.
Navigation in Networks, Revisited Networked Life MKSE 112 Fall 2012 Prof. Michael Kearns.
Topics In Social Computing (67810) Module 1 Introduction & The Structure of Social Networks.
Small-world phenomenon: An Algorithmic Perspective Jon Kleinberg.
Algorithms For Small World Networks Anurag singh.
Lecture 1: Complex Networks
Peer-to-Peer and Social Networks
Milgram’s experiment really demonstrated two striking facts about large social networks: first, that short paths are there in abundance;
The Watts-Strogatz model
Section 8.2: Shortest path and small world effect
Lecture 9: Network models CS 765: Complex Networks
Proof of Kleinberg’s small-world theorems
Network Science: A Short Introduction i3 Workshop
Navigation and Propagation in Networks
Advanced Topics in Data Mining Special focus: Social Networks
Advanced Topics in Data Mining Special focus: Social Networks
Presentation transcript:

Routing in Poisson small-world networks A. J. Ganesh Microsoft Research, Cambridge Joint work with Moez Draief

What is a small world network? Milgram (1967) Milgram (1967) Sent letters to various people in the US addressed to targets in BostonSent letters to various people in the US addressed to targets in Boston Demographic information about target provided: name, address, occupationDemographic information about target provided: name, address, occupation Letters had to be forwarded to target via contacts known on first-name basisLetters had to be forwarded to target via contacts known on first-name basis Average length of chain for successful delivery was found to be six.Average length of chain for successful delivery was found to be six.

Modelling social networks Random graphs have small diameter Random graphs have small diameter Diameter of Erdos-Renyi random graph on n nodes is O(log n) at connectivity thresholdDiameter of Erdos-Renyi random graph on n nodes is O(log n) at connectivity threshold Similar results for power-law random graphsSimilar results for power-law random graphs But not a good model of social networks But not a good model of social networks Social networks are more clusteredSocial networks are more clustered

Small-world network models Watts & Strogatz Watts & Strogatz Lattice plus random shortcuts (uniform)Lattice plus random shortcuts (uniform) Benjamini & Berger Benjamini & Berger d-dimensional lattice, edge (x,y) present with probability |x-y| -rd-dimensional lattice, edge (x,y) present with probability |x-y| -r Coppersmith et al. Coppersmith et al. Diameter is O(log n) if r=dDiameter is O(log n) if r=d Polynomial in n if r>2dPolynomial in n if r>2d

Outline of talk Background: can short paths be found using local information? Background: can short paths be found using local information? Kleinberg, Franceschetti & MeesterKleinberg, Franceschetti & Meester Model: Poisson point process with local links and shortcuts Model: Poisson point process with local links and shortcuts Results Results Open problems Open problems

Kleinberg: can short paths be found? 2-dimensional lattice on N 2 points 2-dimensional lattice on N 2 points Each node has q shortcuts Each node has q shortcuts Each shortcut from x is incident on y with probability proportional to d(x,y) -r, independent of others Each shortcut from x is incident on y with probability proportional to d(x,y) -r, independent of others Need to route a message from source s to destination t using a decentralised algorithm Need to route a message from source s to destination t using a decentralised algorithm

What is a decentralised algorithm? Each node knows co-ordinates of its shortcut contacts & of destination t Each node knows co-ordinates of its shortcut contacts & of destination t Suppose algorithm has currently visited nodes x 0,…,x k Suppose algorithm has currently visited nodes x 0,…,x k Next node to visit must be chosen from among contacts (lattice or shortcut) of these nodes. Next node to visit must be chosen from among contacts (lattice or shortcut) of these nodes.

r=2: Greedy routing At each node visited by algorithm At each node visited by algorithm Choose shortcut contact if it is closer to destinationChoose shortcut contact if it is closer to destination Else choose lattice contact which is closerElse choose lattice contact which is closer Theorem: Number of hops to destination is O(log 2 N) Theorem: Number of hops to destination is O(log 2 N) Key idea: Find good shortcut that halves distance every O(log N) steps Key idea: Find good shortcut that halves distance every O(log N) steps

r 2: Impossibility result r2: No decentralised algorithm can find path shorter than a polynomial in N r2: No decentralised algorithm can find path shorter than a polynomial in N Reason: Reason: Short-cuts lack range if r>2Short-cuts lack range if r>2 Short-cuts spread too uniformly if r<2, cant close in on target (using only local information)Short-cuts spread too uniformly if r<2, cant close in on target (using only local information)

Continuum model Franceschetti and Meester Franceschetti and Meester Each point in plane has shortcut to other points according to an inhomogeneous Poisson process Each point in plane has shortcut to other points according to an inhomogeneous Poisson process Intensity at distance x proportional to x -r (not integrable) Intensity at distance x proportional to x -r (not integrable) Objective is to deliver message from s to neighbourhood of t Objective is to deliver message from s to neighbourhood of t

Results If r=2, greedy algorithm has expected delivery time If r=2, greedy algorithm has expected delivery time O(log d(s,t) + log(1/)) If r>2, any decentralised algorithm needs at least d(s,t) β steps If r>2, any decentralised algorithm needs at least d(s,t) β steps If r<2, any decentralised algorithm needs at least (1/) β steps If r<2, any decentralised algorithm needs at least (1/) β steps

Poisson small-world model Nodes: located at points of unit rate Poisson point process on square of area n. Nodes: located at points of unit rate Poisson point process on square of area n. Local links: to all other nodes within distance c log(n) Local links: to all other nodes within distance c log(n) Shortcuts: q per node, in expectation Shortcuts: q per node, in expectation Probability of shortcut to node at distance d: c(q,n) d -r Probability of shortcut to node at distance d: c(q,n) d -r

Remarks For sufficiently large c>0, graph formed by local links alone is connected. For sufficiently large c>0, graph formed by local links alone is connected. Hence, message can always be routed in O(n/log(n)) hops. Hence, message can always be routed in O(n/log(n)) hops. Do shortcuts help us do better? Do shortcuts help us do better? Can we route in polylog(n) hops? Can we route in polylog(n) hops?

Results: r=2 r=2: there is a decentralised algorithm that can route a message between any pair of nodes in O(log 2 n) hops, with high probability, for sufficiently large c>0 and any q>0. r=2: there is a decentralised algorithm that can route a message between any pair of nodes in O(log 2 n) hops, with high probability, for sufficiently large c>0 and any q>0.

Results: r2 r<2: Any decentralised routing algorithm needs more than n hops on average, for any < (2-r)/6 r<2: Any decentralised routing algorithm needs more than n hops on average, for any < (2-r)/6 r>2: Any decentralised routing algorithm needs more than n hops on average, for any 2: Any decentralised routing algorithm needs more than n hops on average, for any < (r-2)/2(r-1)

Algorithm for r=2 At each hop, algorithm maintains a `radius, initialised to d(s,t). At each hop, algorithm maintains a `radius, initialised to d(s,t). If current node x has shortcut to a node in circle of radius /2 centred at t, message is delivered to this node. If current node x has shortcut to a node in circle of radius /2 centred at t, message is delivered to this node. Else, it is delivered to one of the local contacts of x which is closer to t Else, it is delivered to one of the local contacts of x which is closer to t If d(x,t)</2, is updated to /2 If d(x,t)</2, is updated to /2

In pictures + modification

Sketch proof: r=2 If c large enough, every node x has a local contact which is closer to t If c large enough, every node x has a local contact which is closer to t P(good shortcut) depends on number of nodes in annulus P(good shortcut) depends on number of nodes in annulus It is O(1/log n) if number of nodes is large enoughIt is O(1/log n) if number of nodes is large enough Probability that number of nodes is small is negligibleProbability that number of nodes is small is negligible Hence, good shortcut found after geometric O(log n) steps Hence, good shortcut found after geometric O(log n) steps

Sketch proof: r<2 Suppose algorithm finds a path with fewer than n hops Suppose algorithm finds a path with fewer than n hops There has to be at least one shortcut which takes path into circle of radius n+ centred at t There has to be at least one shortcut which takes path into circle of radius n+ centred at t P(shortcut between u and v) is small for any u,v. P(shortcut between u and v) is small for any u,v. Very unlikely to find shortcut into this circle, by union bound. Very unlikely to find shortcut into this circle, by union bound.

Sketch proof: r>2 Long-range contacts penalised Long-range contacts penalised P(shortcut has length > n ) is too small P(shortcut has length > n ) is too small With high probability, there is no such shortcut within first n nodes seen by routing algorithm With high probability, there is no such shortcut within first n nodes seen by routing algorithm

Remarks Results hold for inhomogeneous Poisson processes with intensity bounded away from zero and infinity Results hold for inhomogeneous Poisson processes with intensity bounded away from zero and infinity Impossibility results continue to hold with Impossibility results continue to hold with 1-step look-ahead: each node knows locations not only of its local and long-range contacts but also their contacts1-step look-ahead: each node knows locations not only of its local and long-range contacts but also their contacts or k-step look-ahead, fixed kor k-step look-ahead, fixed k Mean number of shortcuts per node being polylog(n) instead of constantMean number of shortcuts per node being polylog(n) instead of constant

Open problems Other density functions for shortcuts Other density functions for shortcuts r=2: variants of proposed algorithm should also work, but hard to prove r=2: variants of proposed algorithm should also work, but hard to prove r=2: what if there are no local contacts but c log(n) shortcuts? Is graph connected? Is efficient routing possible? r=2: what if there are no local contacts but c log(n) shortcuts? Is graph connected? Is efficient routing possible? Still doesnt explain Milgrams experiments! Still doesnt explain Milgrams experiments!