NUCLEAR INP - NCSR D Nuclear Structure Staff: Dennis Bonatsos Students: P. Georgoudis S. Karabatsou Collaborations: N. Minkov, P.A. Terziev, INRNE.

Slides:



Advertisements
Similar presentations
Nuclear Reactor Theory, JU, First Semester, (Saed Dababneh). 1 1/ v 235 U thermal cross sections fission 584 b. scattering 9 b. radiative capture.
Advertisements

Neutron-induced Reactions
Nuclear and Radiation Physics, BAU, 1 st Semester, (Saed Dababneh). 1 Nuclear Mass Unified atomic mass unit u based on 12 C. Replaced both physical.
Compound Nucleus Reactions
? Nuclear Reactions Categorization of Nuclear Reactions
Accelerator Physics, JU, First Semester, (Saed Dababneh).
Modern Theory of Nuclear Structure, Exotic Excitations and Neutrino-Nucleus Reactions N. Paar Physics Department Faculty of Science University of Zagreb.
Nuclear Astrophysics Experiments in ATOMKI Gy. Gyürky Institute of Nuclear Research (ATOMKI) Debrecen, Hungary.
BigBite K.Egiyan Probabilities of SRC in Nuclei Measured with A(e,e / ) Reactions K. Egiyan (Yerevan Physics Institute, Yerevan, Armenia and Jefferson.
Giant resonances, exotic modes & astrophysics
Spectroscopy at the Particle Threshold H. Lenske 1.
Coulomb excitation with radioactive ion beams
Single Neutron Stripping Reactions for Structural Study of 23 O Ravinder Kumar Department of Physics Kurukshetra University, Kurukshetra Kurukshetra -
Lawrence Livermore National Laboratory SciDAC Reaction Theory LLNL-PRES Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, CA
Mini Quiz- Half Sheet H = 1.01 g/mol, O = g/mol S = g/mol, N = g/mol, I = g/mol 1.How many grams in 3.4 x molecules of H.
Nuclear structure theory D. Bonatsos NuPECC, March 2015.
Fusion-Fission Dynamics for Super-Heavy Elements Bülent Yılmaz 1,2 and David Boilley 1,3 Fission of Atomic Nuclei Super-Heavy Elements (SHE) Measurement.
Experimental Nuclear Physics in ATOMKI Debrecen. Cyclotron laboratory in ATOMKI, Debrecen.

W. Udo Schröder, 2005 Rotational Spectroscopy 1. W. Udo Schröder, 2005 Rotational Spectroscopy 2 Rigid-Body Rotations Axially symmetric nucleus 
1 Role of the nuclear shell structure and orientation angles of deformed reactants in complete fusion Joint Institute for Nuclear Research Flerov Laboratory.
Nuclear and Radiation Physics, BAU, 1 st Semester, (Saed Dababneh). 1 Nuclear Reactions Categorization of Nuclear Reactions According to: bombarding.
25 9. Direct reactions - for example direct capture: Direct transition from initial state |a+A> to final state B +  geometrical.
The Theory of Partial Fusion A theory of partial fusion is used to calculate the competition between escape (breakup) and absorption (compound-nucleus.
Objectives To learn the types of radioactive decay
NUCLEAR CHEMISTRY QUIZ.
Α - capture reactions using the 4π γ-summing technique Α. Lagoyannis Institute of Nuclear Physics, N.C.S.R. “Demokritos”
Beatriz Jurado, Karl-Heinz Schmidt CENBG, Bordeaux, France Supported by EFNUDAT, ERINDA and NEA The GEneral Fission code (GEF) Motivation: Accurate and.
1 Formation spectra of  -mesic nuclei by (  +,p) reaction at J-PARC and chiral symmetry for baryons Hideko Nagahiro (RCNP) Collaborators : Daisuke Jido.
Nuclear and Radiation Physics, BAU, First Semester, (Saed Dababneh). 1 Nuclear Reactions Sample.
Nuclear Level Density 1.What we know, what we do not know, and what we want to know 2.Experimental techniques to study level densities, what has been done.
The Algebraic Approach 1.Introduction 2.The building blocks 3.Dynamical symmetries 4.Single nucleon description 5.Critical point symmetries 6.Symmetry.
Pygmy Dipole Resonance in 64Fe
Trento, Giessen-BUU: recent progress T. Gaitanos (JLU-Giessen) Model outline Relativistic transport (GiBUU) (briefly) The transport Eq. in relativistic.
Dott. Antonio Botrugno Ph.D. course UNIVERSITY OF LECCE (ITALY) DEPARTMENT OF PHYSICS.
ESF Workshop on The future of stable beams in Nuclear Astrophysics, Athens, Dec , 2007 Stable ion beams for nuclear astrophysics: Where do we stand.
April 17 DoE review 1 Reaction Theory in UNEDF Optical Potentials from DFT models Ian Thompson*, J. Escher (LLNL) T. Kawano, M. Dupuis (LANL) G. Arbanas.
FENDL-3 1st Research Co-ordination Meeting, 2-5 December 2008, IAEA, Vienna1 Marilena Avrigeanu Progress on Deuteron-Induced Activation Cross Section Evaluation.
10-1 Fission General Overview of Fission The Probability of Fission §The Liquid Drop Model §Shell Corrections §Spontaneous Fission §Spontaneously Fissioning.
NEUTRON SKIN AND GIANT RESONANCES Shalom Shlomo Cyclotron Institute Texas A&M University.
W. Nazarewicz. Limit of stability for heavy nuclei Meitner & Frisch (1939): Nucleus is like liquid drop For Z>100: repulsive Coulomb force stronger than.
Marilena Avrigeanu28th Int. Workshop. on Nuclear Theory Rila Mountains 2009 α - particle Optical Potential for astrophysical studies M. Avrigeanu and V.
Lawrence Livermore National Laboratory Effective interactions for reaction calculations Jutta Escher, F.S. Dietrich, D. Gogny, G.P.A. Nobre, I.J. Thompson.
Quantum Phase Transitions (QPT) in Finite Nuclei R. F. Casten June 21, 2010, CERN/ISOLDE.
Petrică Buganu, and Radu Budaca IFIN-HH, Bucharest – Magurele, Romania International Workshop “Shapes and Dynamics of Atomic Nuclei: Contemporary Aspects”
© 2003 By Default! A Free sample background from Slide 1  nuclear structure studies nn uclear structure studies Who am.
Some (more) High(ish)-Spin Nuclear Structure Paddy Regan Department of Physics Univesity of Surrey Guildford, UK Lecture 2 Low-energy.
Shape evolution of highly deformed 75 Kr and projected shell model description Yang Yingchun Shanghai Jiao Tong University Shanghai, August 24, 2009.
Fusion of light halo nuclei
Correlations in Structure among Observables and Enhanced Proton-Neutron Interactions R.Burcu ÇAKIRLI Istanbul University International Workshop "Shapes.
Quantum phase transitions and structural evolution in nuclei.
Time dependent GCM+GOA method applied to the fission process ESNT janvier / 316 H. Goutte, J.-F. Berger, D. Gogny CEA/DAM Ile de France.
Lecture 4 1.The role of orientation angles of the colliding nuclei relative to the beam energy in fusion-fission and quasifission reactions. 2.The effect.
Few-Body Models of Light Nuclei The 8th APCTP-BLTP JINR Joint Workshop June 29 – July 4, 2014, Jeju, Korea S. N. Ershov.
HIRG 重离子反应组 Heavy Ion Reaction Group GDR as a Probe of Alpha Cluster in Light Nuclei Wan-Bing He ( 何万兵 ) SINAP-CUSTIPEN Collaborators : Yu-Gang.
Shape parameterization
György Gyürky Institute for Nuclear Research (Atomki)
Open quantum systems.
3. The optical model Prof. Dr. A.J. (Arjan) Koning1,2
Low energy nuclear collective modes and excitations
Department of Physics, University of Jyväskylä, Finland
gamma-transmission coefficients are most uncertain values !!!
Nuclear Energy Atoms and Isotopes.
Resonance Reactions HW 34 In the 19F(p,) reaction:
Nuclear Energy Atoms and Isotopes.
The role of fission in the r-process nucleosynthesis
Indirect Methods in Nuclear Astrophysics
Elastic alpha scattering experiments
Nuclear Chemistry The energy of life.
Effects of Deformation Parameter on Reaction Cross Section
Presentation transcript:

NUCLEAR INP - NCSR D Nuclear Structure Staff: Dennis Bonatsos Students: P. Georgoudis S. Karabatsou Collaborations: N. Minkov, P.A. Terziev, INRNE Sofia D, Balabanski, U. Sofia M.N. Erduran, B. Akkus, Istanbul U. N. Casten, Yale U., N. Pietralla SUNY at Stony Brook Nuclear Reactions & Astrophysics Staff: Vivian Demetriou (since 2006) Post-doctoral researcher: D. Petrellis Collaborations: Nuclear Physics Exp. group S. Goriely, ULB, Brussels Y. El Masri, UCL, LLN Vivian Demetriou, INP, NCSR Demokritos

NUCLEAR INP - NCSR D Nuclear Structure Conferences/Workshops: International Balkan School on Nuclear Physics, Symposium of the Hellenic Nuclear Physics Society Workshop on Dynamical Symmetries 2008 Nuclear Reactions & Astrophysics Support: European Reintegration Grant (2005) on Alpha-nucleus OP Conferences/Workshops: FINUSTAR (2005), FINUSTAR 2 (2007), FINUSTAR 3 (2010)

LIBRA project Nuclear structure: study of dynamical symmetries experiment-theory Nuclear Astrophysics development of alpha-particle optical potential alpha-capture measurements theory post-doc position open for 2011

Collaborations INRNE, Sofia, Bulgaria: N. Minkov, P. A. Terziev. U. Sofia, Bulgaria / U. Camerino, Italy : D. Balabanski. Istanbul U., Turkey: M. N. Erduran, B. Akkus. SUNY at Stony Brook, USA: N. Pietralla Support: Collaborative Linkage Grant (6/2002-6/2004). New dynamic symmetries in atomic nuclei. Istanbul U. (M. N. Erduran), Bogazici U. (M. Arik), U. Sofia (D. Balabanski), NIPNE Bucharest (M. Ionescu-Bujor), NCSR Demokritos (D. Bonatsos), Yale U. (R. F. Casten). Nuclear Structure: CRITICAL POINT SYMMETRIES (2003-present)

Topics: - Sequences of potentials interpolating between U(5) and E(5) or X(5). - Davidson potentials, variational procedure. - Z(5): Solution of Bohr equation for gamma=30 deg. - Transition to octupole deformation in light actinides. - Wobbling motion within X(5). - Triaxial shapes. - Comparison between Davidson and displaced well potentials. - Derivation of collective models from rotation invariant potentials through Goldstone bosons and the Higgs mechanism. - Search for larger symmetries which could lead to X(5) through contraction.

Nuclear Reactions & Astrophysics nuclear reactions relevant to heavy-element nucleosynthesis provide cross sections and reaction rates for reaction network calculations (TALYS code) develop global and microscopic models for nuclear properties

Nuclear needs for nucleosynthesis applications Exotic species (no experimental data) Astrophysics conditions (proj. energy or target conditions not available in the Lab.)

Ground state mass, deformation, density distribution, single-particle-level scheme, … Nuclear Level Densities Fission properties: fission barriers and saddle-point NLDs Nucleon- and alpha-nucleus optical potential γ-strength function: Giant Resonance Properties Nuclear properties for cross section calculations Nuclear Ingredients from(1) direct experimental data (2) theoretical models …For about 8000 nuclei….from dripline to dripline

r process: Fission Fission paths microscopic HFB shapes (Hill-Wheeler) and WKB penetrabilities

uncertainties : B 1 MeV T 10 4 Spontaneous fission T 1/2 n-induced fission β-delayed fission Q PD, Samyn, Goriely, NPA 758 (2005),627c; Goriely, PD et al., NPA 758 (2005), 587c Work in progress: same HFB model for masses, NLDs and fission

r: ratio of maximum over minimum rates obtained with 14 different sets of nuclear ingredients using MOST Arnould and Goriely, Phys. Rep. 384, 1 (2003) neutron captures proton captures α captures p-process nucleosynthesis: n-, p- and alpha captures

αlpha radiative-capture rates low-energy cross sections depend on α-nucleus optical model potential poor knowledge of α-nucleus optical potential at energies close to Coulomb barrier optical potential determined from scattering and reaction data data at low energies are SCARCE - Square-well potential + - Woods-Saxon Double-folded real + W-S (semi-microscopic: new global OMP) accuracy reliability

Semi-microscopic alpha OP (PD, Grama and Goriely NPA 707 (2002) 253) INP Exp. Group measurements predictions

mass regions with largest uncertainties Work in progress...and Future Update existing semi-microscopic alpha OP on new data Develop fully microscopic alpha OP with RPA in close collaboration with INP Experimental Nuclear Physics group

target nuclei in (α, ) reactions studied via a 4π summing method