The Electron Nucleon Collider a possible future upgrade to FAIR F. Maas Helmholtz Institute Mainz NuPECC town meeting May 31 - June 2, 2010 CSIC, Madrid.

Slides:



Advertisements
Similar presentations
Recent Results from STAR
Advertisements

Luca Stanco - PadovaEW and NP at HERA, Photon EW at HERA Luca Stanco – INFN Padova on behalf of ZEUS and H1 collaborations and RELATED NEW PHYSICS.
Luca Stanco HERA 3: The Physics Case 12 Maggio 2003 – CN1 What we learned from HERA-1 ? What is coming from HERA-2 ? What is left out ?
Günther Rosner EUROHORC/NuPECC, Paris, 29/11/04 1 Hadron Structure & Spectroscopy Experimental frontiers: High precision High intensity Theoretical symbiosis:
Study Neutron Spin Structure with a Solenoid Jian-ping Chen, Jefferson Lab Hall A Collaboration Meeting June 22-23, 2006 Inclusive DIS: Valence quark spin.
The LHeC Project: Deep Inelastic Scattering with E e =70GeV and E p =7TeV P.Newman, Birmingham … with … J. Dainton, M. Klein, E. Perez, F. Willeke hep-ex/ ,
Introduction Glasgow’s NPE research Group uses high precision electromagnetic probes to study the subatomic structure of matter. Alongside this we are.
Mitglied der Helmholtz-Gemeinschaft Beam Cooling at HESR in the FAIR Project 12 th September 2011 Dieter Prasuhn.
Mitglied der Helmholtz-Gemeinschaft PAX Polarized Antiprotons 2nd Meeting FAIR Experiments February 25, 2009 | Hans Ströher (FZ-Jülich)
April 06, 2005 JLab 12 GeV upgrade DOE Science Review 1 Fundamental Structure of Hadrons Zein-Eddine Meziani April 06, 2005 DOE Science Review for JLab.
Probing Nucleon Structure at an Electron Ion Collider Long Range Plan Joint Town Meeting on QCD Temple University, Philadelphia September 14, /14/141LRP.
Physics with Polarized Beams at an Electron Ion Collider EIC International Users Meeting Stony Brook University Stony Brook, New York June 24-27, 2014.
The Science of an EIC Nuclear Science Goals: How do we understand the visible matter in our universe in terms of the fundamental quarks and gluons of QCD?
1 LHeC Considerations for a Lepton Hadron Collider Option for the LHC F. Willeke, BNL The 4th Electron Ion Collider Workshop Hampton University,
Working Group on e-p Physics A. Bruell, E. Sichtermann, W. Vogelsang, C. Weiss Antje Bruell, JLab EIC meeting, Hampton, May Goals of this parallel.
Working Group on e-p Physics A. Bruell, E. Sichtermann, W. Vogelsang, C. Weiss Antje Bruell, JLab EIC meeting, Stony Brook, Dec Physics Topics Working.
9/19/20151 Nucleon Spin: Final Solution at the EIC Feng Yuan Lawrence Berkeley National Laboratory.
THE DEEP INELASTIC SCATTERING ON THE POLARIZED NUCLEONS AT EIC E.S.Timoshin, S.I.Timoshin.
Future Opportunities at an Electron-Ion Collider Oleg Eyser Brookhaven National Laboratory.
 Nucleon spin structure and Imaging in the Valence quark region ➥ Inclusive measurements at large x; quark models tests and Lattice QCD tests ➥ Exclusive.
Spin Azimuthal Asymmetries in Semi-Inclusive DIS at JLAB  Nucleon spin & transverse momentum of partons  Transverse-momentum dependent distributions.
UK Hadron Physics D. G. Ireland 10 October 2014 NuPECC Meeting, Edinburgh.
Experimental Approach to Nuclear Quark Distributions (Rolf Ent – EIC /15/04) One of two tag-team presentations to show why an EIC is optimal to access.
Parton Model & Parton Dynamics Huan Z Huang Department of Physics and Astronomy University of California, Los Angeles Department of Engineering Physics.
Deliverablesobservables what we learn requirementscomments/competition HP13 (2015) Test unique QCD predictions for relations between single-transverse.
Hadronic Multi-particle Final State Measurements with CLAS at Jefferson Lab Laird Kramer Florida International University Neutrino Scattering, March 2003.
Spin-Flavor Decomposition J. P. Chen, Jefferson Lab PVSA Workshop, April 26-27, 2007, Brookhaven National Lab  Polarized Inclusive DIS,  u/u and  d/d.
Thomas Roser Snowmass 2001 June 30 - July 21, 2001 Polarized Proton Acceleration and Collisions Spin dynamics and Siberian Snakes Polarized proton acceleration.
Electron Deuteron Scattering with H1 at HERA ■ Introduction ■ Physics with deuterons ■ H1 upgrade for ed running ■ Possible further studies and the necessary.
Particle Physics Chris Parkes Experimental QCD Kinematics Deep Inelastic Scattering Structure Functions Observation of Partons Scaling Violations Jets.
Spin structure of the nucleon
Office of Science U.S. Department of Energy The Medium Energy Program Outline: Program Overview Some Recent Results FY 2008 Funding Summary.
Spin physics at the SMC Spin Muon Collaboration A. Magnon (CEA-Saclay/IRFU & COMPASS)
Sub-Nucleon Physics Programme Current Status & Outlook for Hadron Physics D G Ireland.
Jim Stewart DESY Measurement of Quark Polarizations in Transversely and Longitudinally Polarized Nucleons at HERMES for the Hermes collaboration Introduction.
General Discussion some general remarks some questions.
ICHEP'06, V. Chekelian, NC DIS at HERA1 Vladimir Chekelian (MPI for Physics, Munich) e  p 27.5 GeV 920 GeV  s = 318 GeV DIS & NC & Polarisation.
UMass Amherst Christine Aidala Jacksonville, FL Measuring the Gluon Helicity Distribution at a Polarized Electron-Proton Collider APS April Meeting 2007.
Single-Spin Asymmetries at CLAS  Transverse momentum of quarks and spin-azimuthal asymmetries  Target single-spin asymmetries  Beam single-spin asymmetries.
Operated by the Southeastern Universities Research Association for the U. S. Department of Energy Thomas Jefferson National Accelerator Facility Rolf Ent.
Günther Rosner EINN05, Milos, 24/9/05 1 Prospects for Hadron Physics in Europe Experimental frontiers:  High precision  High luminosity  Polarisation.
The Quark Structure of the Nucleon Inti Lehmann & Ralf Kaiser University of Glasgow Cosener’s House Meeting 23/05/2007 Nucleon Structure Generalised Parton.
Measurements with Polarized Hadrons T.-A. Shibata Tokyo Institute of Technology Aug 15, 2003 Lepton-Photon 2003.
HERMES による パートン helicity 分布関数の QCD 解析 Tokyo Inst. of Tech. 1. Quantum Chromo-Dynamics (QCD) 2. Parton Helicity Distribution and Nucleon Spin Problem 3.
Measurement of Flavor Separated Quark Polarizations at HERMES Polina Kravchenko (DESY) for the collaboration  Motivation of this work  HERMES experiment.
Overview of Jefferson Lab’s Spin Physics Programme Stephen Bültmann - ODU RHIC/AGS Users Meeting, June 2007 Introduction Experimental Setup Asymmetry Measurement.
Polarised DIS Experiment Gerhard Mallot. G. Mallot/CERN Spin Summer School, BNL, 2004 Plan Lecture I –introduction –kinematics –the cross section –structure.
Transverse Spin Physics with an Electron Ion Collider Oleg Eyser 4 th International Workshop on Transverse Polarisation Phenomena in Hard Processes Chia,
Future studies of TMDs Delia Hasch SIR05- International Workshop on Semi-inclusive reactions and 3D-parton distributions May 18-20, 2005; Jefferson Lab,
Andreas Jankowiak Institut für Kernphysik Johannes Gutenberg – Universität Mainz A Electron-Nucleon-Collider at the HESR of the FAIR Facility:
6/28/20161 Future Challenges of Spin Physics Feng Yuan Lawrence Berkeley National Laboratory.
Timelike Compton Scattering at JLab
EIC NAS review Charge-2 What are the capabilities of other facilities, existing and planned, domestic and abroad, to address the science opportunities.
HERa MEasurement of Spin
Calculation of Beam Equilibrium and Luminosities for
More intense and higher energy
Long-range plan of nuclear physics in Japan
Explore the new QCD frontier: strong color fields in nuclei
Future lepton scattering facilities
EIC NAS review Charge-2 What are the capabilities of other facilities, existing and planned, domestic and abroad, to address the science opportunities.
Measurements of quark transversity and orbital motion in hard scattering Yoshiyuki Miyachi Tokyo Institute of Technology.
Physics with Nuclei at an Electron-Ion Collider
3/19/20181 Nucleon Spin: Final Solution at the EIC Feng Yuan Lawrence Berkeley National Laboratory.
Plans for nucleon structure studies at PANDA
CEPC-SppC Accelerator CDR Copmpletion at the end of 2017
CASA Collider Design Review Retreat Other Electron-Ion Colliders: eRHIC, ENC & LHeC Yuhong Zhang February 24, 2010.
Selected Physics Topics at the Electron-Ion-Collider
Study of Strange Quark in the Nucleon with Neutrino Scattering
MAID and the GDH sum rule in the resonance region
Workshops Overview/Goals
Presentation transcript:

The Electron Nucleon Collider a possible future upgrade to FAIR F. Maas Helmholtz Institute Mainz NuPECC town meeting May 31 - June 2, 2010 CSIC, Madrid

Scientific Goals - Challenge: understand the structure of hadrons and their excited states from first principles - Predict hadronic properties and processes with good and controlled precision. - Ideal probe: CC neutrino and anti-neutrino interactions - More realistic: interaction of polarized charged lepton beams with polarized p and d - dominated by γ exchange at Q 2 M 2 Z,W, coupling to quark charges only- doubly polarized: projecting helicities - Spin flavour structure of quarks f, g (longitudinal), h(transverse) and polarized Gluons - Effects of finite transverse size, correlation of b and x, orbital angular momentum, GPDs - Effects of transverse momentum k of quarks, gauge links

High Energy Lepton Scattering inclusive Scattering (lepton only), exclusive Scattering (complete final state: lepton, photon, proton), semi-inclusive scattering

High luminosity lepton-nucleon collider - The electromagnetic probe: precision of the EW interaction, but needs high luminosity - Lepton scattering on hadron targets in new regimes yielded new insights, e.g. DIS, EMC effect, Glue - new regimes: Exclusive reactions, Semiinclusive Deep Inelastic Scattering - High E cm yields a large range of x, Q 2 x range: valence, sea quarks, glue Q 2 range: evolution equations of QCD- High polarization of lepton, nucleon achievable dilution in fixed target experiments- Collider geometry allows complete reconstruction of final state

30 Years of Deep Inelastic Scattering Analysis of DIS in terms of pQCD

Energy/Luminosity Landscape ENC Electron Nucleon Collider: - high energy - high luminosity - polarisation LHeC

Unpolarised Parton Distributions ValenceSea

Understanding Origin of Nucleon Spin

Generalized Parton Distributions (GPDs): 3D picture of the nucleon, Angular Momentum Sum Rule

Transverse Momentum Dependent Parton Distributions QCD prediction: transversely polarised target in PANDA; PAX

Study of Beam Dynamics: Beam equilibria and luminosities Study of Spin Dynamics: Spin resonances in SIS18 and HESR

Andreas Jankowiak, Institut für Kernphysik, Johannes Gutenberg – University Mainz idea: P e-e- pol. e - -inj. L > /cm 2 s s 1/2 > 10GeV (3.3GeV e - 15GeV p) polarised e - ( > 80%) polarised p / d ( > 80%) (transversal + longitudinal) using the PANDA detector Common effort of German Universities (Bonn, Mainz, Dortmund) plus collaboration with Research Centres FZJ, DESY, GSI,... HESR pRing eRing PANDA 8MV eCool

Andreas Jankowiak, Institut für Kernphysik, Johannes Gutenberg – University Mainz The eRing 24to dipole, 4.3to quadrupole both nc eRing dipole: ca. 0.4m×0.25m and 1.6to for 4m length eRing inside the HESR tunnel ! In addition: - cavities - spin-manipulation - injection/extraction - feedback -...

Andreas Jankowiak, Institut für Kernphysik, Johannes Gutenberg – University Mainz HESR / 15GeV peRing / 3.3GeV L [circumference, m] R [bending radius, m]3025 norm / geo [mm mrad ]2 / 0.13 IP [m] 0.1 r IP [mm] / IP [mrad]0.111 / 1.12 l [bunch length, m]0.1< 0.1 n [particle / bunch ]3.623 I b [bunch current, mA] h [bunches / ring] 200 I [total current, A] P SR [sr-Power, kW] / [kW/m]1590 / 10 f coll [collision freq., MHz] coll [bunch distance, m] Δ Q sc 0.1 [beam beam parameter] Luminosität [1/(cm 2 s)] (inc. 80% hour glass red.) · P [polarisation, %]80% needs 8.2MV eCool IR + detector design bunching process B-factory design x 2 possible under collision? polarisation preservation? polarisation?

27 GeV compass hermes JLab ( upgraded ) Q2Q2 EIC HERA ENC JLab12 EIC ENC Q2Q2

L dt (fb -1 ) E CM (GeV) Science reach as a function of E CM and integrated luminosity gluon saturation sin 2 θ W DIS nucleon structure exclusive, electroweak processes x min ~ x min ~ x min ~ fb -1 quarks, gluons in nuclei 4 X 250 MeRHIC 10 X 250 EIC 3 X 15 ENC

- A polarized Electron-Nucleon-Collider L /cm 2 /s s 200 GeV 2 - add 3 GeV electron beam in HESR tunnel to 15 GeV protons - polarised proton source - needs 8 MeV electron cooling - highly polarised electron and nucleon beam - factor of 100 higher FOM in doubly polarised channels - (slightly) modified PANDA detector with shifted IR - first step in IR-design, polarisation - great potential for exploring the structure of the nucleon Summary