Cooperative Transmit Power Estimation under Wireless Fading Murtaza Zafer (IBM US), Bongjun Ko (IBM US), Ivan W. Ho (Imperial College, UK) and Chatschik.

Slides:



Advertisements
Similar presentations
STATISTICS POINT ESTIMATION Professor Ke-Sheng Cheng Department of Bioenvironmental Systems Engineering National Taiwan University.
Advertisements

Bayesian Belief Propagation
Modeling of Data. Basic Bayes theorem Bayes theorem relates the conditional probabilities of two events A, and B: A might be a hypothesis and B might.
The Maximum Likelihood Method
Ulams Game and Universal Communications Using Feedback Ofer Shayevitz June 2006.
The Capacity of Wireless Networks Danss Course, Sunday, 23/11/03.
The Capacity of Wireless Networks
Mobility Increase the Capacity of Ad-hoc Wireless Network Matthias Gossglauser / David Tse Infocom 2001.
1 ECE 776 Project Information-theoretic Approaches for Sensor Selection and Placement in Sensor Networks for Target Localization and Tracking Renita Machado.
Detecting MAC Layer Back-off Timer Violations in Mobile Ad Hoc Networks Venkata Nishanth Lolla, Lap Kong Law, Srikanth V. Krishnamurthy, Chinya Ravishankar,
CmpE 104 SOFTWARE STATISTICAL TOOLS & METHODS MEASURING & ESTIMATING SOFTWARE SIZE AND RESOURCE & SCHEDULE ESTIMATING.
1 12. Principles of Parameter Estimation The purpose of this lecture is to illustrate the usefulness of the various concepts introduced and studied in.
Computer Networks Group Universität Paderborn Ad hoc and Sensor Networks Chapter 9: Localization & positioning Holger Karl.
CSC321: 2011 Introduction to Neural Networks and Machine Learning Lecture 10: The Bayesian way to fit models Geoffrey Hinton.
The General Linear Model. The Simple Linear Model Linear Regression.
Generated Waypoint Efficiency: The efficiency considered here is defined as follows: As can be seen from the graph, for the obstruction radius values (200,
Graduate School of Information Sciences, Tohoku University
Location Estimation in Sensor Networks Moshe Mishali.
Descriptive statistics Experiment  Data  Sample Statistics Experiment  Data  Sample Statistics Sample mean Sample mean Sample variance Sample variance.
1 On the Performance of Slotted Aloha with Capture Effect in Wireless Networks Arash Behzad and Julan Hsu Professor Mario Gerla CS218 Project UCLA December.
Presenting: Assaf Tzabari
Parametric Inference.
Review of Probability and Random Processes
July 3, Department of Computer and Information Science (IDA) Linköpings universitet, Sweden Minimal sufficient statistic.
Lecture 7 1 Statistics Statistics: 1. Model 2. Estimation 3. Hypothesis test.
Lecture II-2: Probability Review
Simulation Output Analysis
International Technology Alliance In Network & Information Sciences International Technology Alliance In Network & Information Sciences 1 Cooperative Wireless.
On the Optimal SINR in Random Access Networks with Spatial Re-Use Navid Ehsan and R. L. Cruz UCSD.
An algorithm for dynamic spectrum allocation in shadowing environment and with communication constraints Konstantinos Koufos Helsinki University of Technology.
Computing and Communicating Functions over Sensor Networks A.Giridhar and P. R. Kumar Presented by Srikanth Hariharan.
Target Tracking with Binary Proximity Sensors: Fundamental Limits, Minimal Descriptions, and Algorithms N. Shrivastava, R. Mudumbai, U. Madhow, and S.
TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307.
Traffic Modeling.
Prof. Dr. S. K. Bhattacharjee Department of Statistics University of Rajshahi.
Random Sampling, Point Estimation and Maximum Likelihood.
Lecture 12 Statistical Inference (Estimation) Point and Interval estimation By Aziza Munir.
ECE 8443 – Pattern Recognition ECE 8423 – Adaptive Signal Processing Objectives: Deterministic vs. Random Maximum A Posteriori Maximum Likelihood Minimum.
Lab 3b: Distribution of the mean
ELEC 303 – Random Signals Lecture 18 – Classical Statistical Inference, Dr. Farinaz Koushanfar ECE Dept., Rice University Nov 4, 2010.
Lecture 4: Statistics Review II Date: 9/5/02  Hypothesis tests: power  Estimation: likelihood, moment estimation, least square  Statistical properties.
PROBABILITY AND STATISTICS FOR ENGINEERING Hossein Sameti Department of Computer Engineering Sharif University of Technology Principles of Parameter Estimation.
11/25/2015 Wireless Sensor Networks COE 499 Localization Tarek Sheltami KFUPM CCSE COE 1.
Consistency An estimator is a consistent estimator of θ, if , i.e., if
Outage in Large Wireless Networks with Spectrum Sharing under Rayleigh Fading MASc. Defence SYSC Dept., Carleton University 1 Arshdeep S. Kahlon, B.E.
Brief Review Probability and Statistics. Probability distributions Continuous distributions.
1 Introduction to Statistics − Day 4 Glen Cowan Lecture 1 Probability Random variables, probability densities, etc. Lecture 2 Brief catalogue of probability.
Machine Learning 5. Parametric Methods.
G. Giorgetti, ACM MELT 2008 – San Francisco – September 19, 2008 Localization using Signal Strength: TO RANGE OR NOT TO RANGE? Gianni Giorgetti Sandeep.
1 On the Channel Capacity of Wireless Fading Channels C. D. Charalambous and S. Z. Denic School of Information Technology and Engineering, University of.
Statistics Sampling Distributions and Point Estimation of Parameters Contents, figures, and exercises come from the textbook: Applied Statistics and Probability.
Review of statistical modeling and probability theory Alan Moses ML4bio.
G. Cowan Lectures on Statistical Data Analysis Lecture 9 page 1 Statistical Data Analysis: Lecture 9 1Probability, Bayes’ theorem 2Random variables and.
1 Review of Probability and Random Processes. 2 Importance of Random Processes Random variables and processes talk about quantities and signals which.
Parameter Estimation. Statistics Probability specified inferred Steam engine pump “prediction” “estimation”
R. Kass/W03 P416 Lecture 5 l Suppose we are trying to measure the true value of some quantity (x T ). u We make repeated measurements of this quantity.
Computacion Inteligente Least-Square Methods for System Identification.
Conditional Expectation
Week 21 Statistical Model A statistical model for some data is a set of distributions, one of which corresponds to the true unknown distribution that produced.
Presentation : “ Maximum Likelihood Estimation” Presented By : Jesu Kiran Spurgen Date :
STA302/1001 week 11 Regression Models - Introduction In regression models, two types of variables that are studied:  A dependent variable, Y, also called.
12. Principles of Parameter Estimation
Probability Theory and Parameter Estimation I
Ch3: Model Building through Regression
More about Posterior Distributions
Wireless Mesh Networks
Parametric Methods Berlin Chen, 2005 References:
12. Principles of Parameter Estimation
Statistical Model A statistical model for some data is a set of distributions, one of which corresponds to the true unknown distribution that produced.
Statistical Model A statistical model for some data is a set of distributions, one of which corresponds to the true unknown distribution that produced.
Presentation transcript:

Cooperative Transmit Power Estimation under Wireless Fading Murtaza Zafer (IBM US), Bongjun Ko (IBM US), Ivan W. Ho (Imperial College, UK) and Chatschik Bisdikian (IBM US)

Problem Synopsis Node T is a wireless transmitter with unknown Tx power P, and unknown location (x,y) Nodes {m 1,…, m N } are monitors that measure received power {p i } Goal – given {p i } and {(x i,y i )} (monitor locations), estimate unknown P (and also unknown location (x,y)) m2m2 P (x,y) m3m3 mNmN p N (x N,y N ) p 3 (x 3,y 3 ) p 2 (x 2,y 2 ) p 1 (x 1,y 1 ) m1m1 T

Problem Synopsis Sensor Networks – Event detection – {m 1,…, m N } are sensors, and T is the source point of an event – Goal – detect important events, eg: bomb explosion, based on measured power Wireless Ad-hoc Networks – physical layer monitoring – {m 1,…, m N } monitor a wireless network – Goal – detect maximum transmit power violation; i.e. detect misbehaving/mis- configured nodes, signal jamming m2m2 P (x,y) m3m3 mNmN p N (x N,y N ) p 3 (x 3,y 3 ) p 2 (x 2,y 2 ) p 1 (x 1,y 1 ) m1m1 T Applications Blind estimation – no prior knowledge (statistical or otherwise) of the location or transmission power of T

Talk Overview Power propagation model – Lognormal fading Deterministic Case – geometrical insights Single/two monitor scenario Multiple monitor scenario Stochastic Case Maximum Likelihood (ML) estimate Asymptotic optimality of ML estimate Numerical Results Conclusion

Power Propagation model Lognormal fading P i = received power at monitor i d i = distance between the transmitter and monitor i α = attenuation factor, (α > 1) k = normalizing constant H i = lognormal random variable W i – unknown to the monitor – represents the aggregated effect of randomness in the environment; eg: multi-path fading didi PiPi T mimi P

Deterministic Case Power propagation model: T 1 Monitor 1 P P1P1 d1d1 best estimate of transmit power: P* P 1 Single monitor measurement (no fading/random noise in power measurements)

Deterministic Case Monitor 2 Note: d 1, d 2 are unknown Monitor 1 P P1P1 P2P2 d 12 d1d1 d2d2 2 T 1 Simple Cooperation: P* max(P 1, P 2 ) Q: Can we do better? Locus of T, Two monitor scenario Eqn (1) Eqn (2) Equation of a circle

Deterministic Case Two monitor scenario P achieves lower bound, 2 1 T (x 1, y 1 )(x 2, y 2 ) P1P1 P2P2 T T T T T (x, y) x θ where, center of circle

Deterministic Case Multiple monitor scenario With multiple monitors – diversity in measurements System of equations with unknowns (x,y,P) We should be able to solve these equations to obtain exact P ? Answer: Yes and No !!

Deterministic Case 1 2 (x r, y r ) d r,1 d r,2 T (x, y) 3 4 d1d1 d2d2 Theorem: There is a unique solution (P*, x*, y*) except when the monitors are placed on an arc of a circle or a straight line that does not pass through the actual transmitter location. Proof: A location (x, y) is a solution if and only if it satisfies d 1 /d 2 =c 1, …, d N-1 /d N = c N-1 The actual location (x r, y r ) is one solution; thus d r,1 /d r,2 =c 1, …, d r,N-1 /d r,N = c N-1 There exists another solution at (x, y) if and only if, d r,1 /d r,2 = d 1 /d 2, …; equivalently, T

Deterministic Case 1 2 (x r, y r ) d r,1 d r,2 T (x, y) 3 4 d1d1 d2d2 Observation: Without transmit power information, and if monitors lie on an arc of a circle, even with infinite monitors and no fading, the transmission power (and transmitter location) cannot be uniquely determined. T Theorem: There is a unique solution (P*, x*, y*) except when the monitors are placed on an arc of a circle or a straight line that does not pass through the actual transmitter location.

Deterministic Case Multiple monitor scenario 12 Corollary 1: Two monitors always has multiple solutions

Deterministic Case Multiple monitor scenario 13 Corollary 1: Two monitors always has multiple solutions Counter-intuitive Insight: For any regular polygon placement of monitors the transmission power cannot be uniquely determined !! Corollary 2: Three monitors as a triangle always has multiple solutions 2 Conversely: For all non-circular placement of monitors, transmission power can be uniquely determined.

Talk Overview Power propagation model – Lognormal fading Deterministic Case – geometrical insights Single/two monitor scenario Multiple monitor scenario Stochastic Case ML estimate Asymptotic optimality of ML estimate Numerical Results Conclusion

Stochastic Case m1m1 P (x,y) m2m2 mNmN p N (x N,y N ) p 2 (x 2,y 2 ) p 1 (x 1,y 1 ) Let z i = ln(p i ), Let Z = ln(P), and ML estimate (Z*,x*,y*) is the value that maximizes the joint probability density function The joint probability density function Maximum Likelihood Estimate T Power attenuation model

Stochastic Case Theorem: The ML estimate for N monitor case is given as, (x*,y*) is the solution to the minimization above, where the objective function is sample variance of {ln(p i d i α )} distance between some location (x,y) and monitor i distance between estimated Tx. location (x*,y*) and monitor i P* is proportional to the geometric mean of {p i (d* i ) α }

Stochastic Case What happens when N increases ? more number of measurements of received power increase in the spatial diversity of measurements Does the transmission power estimate improve ? Answer: Yes !! ; Estimator is asymptotically optimal

Stochastic Case Asymptotic optimality as N increases Random Monitor Placement N monitors placed i.i.d. randomly in a bounded region Г Each monitor makes an independent measurement of the received power Random placement is such that it is not a distribution over an arc of a circle Let P N * be the estimated transmit power using the results presented earlier Theorem: As N increases the estimated transmit power converges to the actual power P almost surely,

Numerical Results Synthetic data set –N = 2 to 20 monitors placed uniformly at random in a disk of radius R = 40. –Received power is generated by i.i.d. lognormal fading model for each monitor. –Performance measured: averaged over estimation for 1000 transmitter locations. Empirical data set –Sensor network measurement data by N. Patwari. –Total 44 wireless devices; each device transmits at dBm; received powers are measured between all pairs of devices –The data is statistically shown to fit well to the lognormal fading model = 2.3, and dB = –Randomly chosen N=3,4,…,10 monitors out of 44 devices.

Numerical Results Performance metric –The above metric measures the average mean-square dB error Estimators –MLE-Coop-fmin ML estimate with fminsearch in MATLAB for location estimation –MLE-Coop-grid ML estimation with location estimation by dividing region into grid points –MLE-ideal ML estimate by assuming that the transmitter location is magically known –MLE-Pair ML estimate is obtained by considering only monitor pairs Average taken over all the pair-wise estimates

Numerical Results Synthetic data set Empirical data set (MLE-Coop-grid)

Conclusion Blind estimation of transmission power – Studied estimators for deterministic and stochastic signal propagation – Utilized spatial diversity in measurements – Obtained asymptotically optimal ML estimate – Presented numerical results quantifying the performance Geometrical insights – Two-monitor estimation was equivalent to locating the transmitter on a certain unique circle – If monitors are placed on a arc of a circle, the transmission power cannot be determined with full accuracy (even with infinite monitors)