Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

Slides:



Advertisements
Similar presentations
PID v2 and v4 from Au+Au Collisions at √sNN = 200 GeV at RHIC
Advertisements

Zi-Wei Lin (ECU) 28th WWND, Puerto Rico April 10, Update of Initial Conditions in A Multiple Phase Transport (AMPT) Model Zi-Wei Lin Department.
, CZE ISMD2005 Zhiming LI 11/08/ and collisions at GeV Entropy analysis in and collisions at GeV Zhiming LI (For the NA22 Collaboration)
Chiral symmetry breaking and structure of quark droplets
K*(892) Resonance Production in Au+Au and Cu+Cu Collisions at  s NN = 200 GeV & 62.4 GeV Motivation Analysis and Results Summary 1 Sadhana Dash Institute.
Relativistic Heavy-Ion Collisions: Recent Results from RHIC David Hardtke LBNL.
DNP03, Tucson, Oct 29, Kai Schweda Lawrence Berkeley National Laboratory for the STAR collaboration Hadron Yields, Hadrochemistry, and Hadronization.
STAR Patricia Fachini 1 Brookhaven National Laboratory Motivation Data Analysis Results Conclusions Resonance Production in Au+Au and p+p Collisions at.
We distinguish two hadronization mechanisms:  Fragmentation Fragmentation builds on the idea of a single quark in the vacuum, it doesn’t consider many.
STAR STRANGENESS! K0sK0s    K+K+ (Preliminary)         
STAR Looking Through the “Veil of Hadronization”: Pion Entropy & PSD at RHIC John G. Cramer Department of Physics University of Washington, Seattle, WA,
5-12 April 2008 Winter Workshop on Nuclear Dynamics STAR Particle production at RHIC Aneta Iordanova for the STAR collaboration.
Towards a superstatistical SU2 Yang-Mills eos Tamás S. Bíró (KFKI RMKI Budapest / BME) and Zsolt Schram (DTP University of Debrecen) 1. Superstatistics:
 PID spectra in STAR  Baryon/anti-baryon ratios  Mixed hadron ratios  Statistical models  Chemical fits  Quark coalescence  Sudden hadronization.
 Transverse Polarization in STAR Au-Au Collisions Polarization definition and models E896 results STAR analysis STAR results Significance of results Future.
Statistical Models A.) Chemical equilibration (Braun-Munzinger, Stachel, Redlich, Tounsi) B.) Thermal equilibration (Schnedermann, Heinz) C.) Hydrodynamics.
XXXIII International Symposium on Multiparticle Dynamics, September 7, 2003 Kraków, Poland Manuel Calderón de la Barca Sánchez STAR Collaboration Review.
Equation of state for distributed mass quark matter T.S.Bíró, P.Lévai, P.Ván, J.Zimányi KFKI RMKI, Budapest, Hungary Distributed mass partons in quark.
1 Statistical Models and STAR’s Strange Data Sevil Salur Yale University for the STAR Collaboration.
Fragmentation in e + -e  Collisions Dave Kettler Correlations and Fluctuations Firenze July 7-9, 2006 p hadron ee e+e+ , Z 0 LEP PETRA color dipole.
University of Catania INFN-LNS Heavy flavor Suppression : Langevin vs Boltzmann S. K. Das, F. Scardina V. Greco, S. Plumari.
ISMD31 / Sept. 4, 2001 Toru Sugitate / Hiroshima Univ. The 31 st International Symposium on Multiparticle Dynamics on 1-7, Sept in Datong, China.
Particle Spectra at AGS, SPS and RHIC Dieter Röhrich Fysisk institutt, Universitetet i Bergen Similarities and differences Rapidity distributions –net.
M. Beitel, K. Gallmeister, CG, arXiv: in collaboration with: M. Beitel, K. Gallmeister and J. Noronha-Hostler - history of Hagedorn States - nuclear.
Steffen A. RHIC #1 Steffen A. Bass Duke University & RIKEN-BNL Research Center The Protons Puzzle at RHIC - the demise of pQCD? Recombination.
F. Scardina University of Catania INFN-LNS Heavy Flavor in Medium Momentum Evolution: Langevin vs Boltzmann V. Greco S. K. Das S. Plumari V. Minissale.
Pions and kaons from stringy quark matter T.S.Bíró and K.Ürmössy, MTA KFKI RMKI Budapest, Hungary String model, string distribution EoS with stringy interaction.
Quark Correlations and Single Spin Asymmetry Quark Correlations and Single Spin Asymmetry G. Musulmanbekov JINR, Dubna, Russia Contents.
Review of Tsallis distribution applied to RHIC data? NO! Theory about why is it applicable: yes! T.S.Bíró, G.Purcsel and K.Ürmössy MTA KFKI RMKI Budapest.
BNL/ Tatsuya CHUJO CNS workshop, Tokyo Univ. Identified Charged Single Particle Spectra at RHIC-PHENIX Tatsuya Chujo (BNL) for the PHENIX.
EXPERIMENTAL EVIDENCE FOR HADRONIC DECONFINEMENT In p-p Collisions at 1.8 TeV * L. Gutay - 1 * Phys. Lett. B528(2002)43-48 (FNAL, E-735 Collaboration Purdue,
Characterizing non-equilibrium and radial flow at RHIC with Tsallis statistics What physics can spectra address? Why do we need a new BlastWave model and.
Wolfgang Cassing Erice Parton dynamics and hadronization from the sQGP.
The thermodynamical limit of abstract composition rules T. S. Bíró, KFKI RMKI Budapest, H Non-extensive thermodynamics Composition rules and formal log-s.
Electromagnetic and strong probes of compressed baryonic matter at SIS100 energies Elena Bratkovskaya Institut für Theoretische Physik, Uni. Frankfurt.
Phantom Jets: the  puzzle and v 2 without hydrodynamics Rudolph C. Hwa University of Oregon Early Time Dynamics in Heavy Ion Collisions Montreal, July.
Dynamical equilibration of strongly- interacting ‘infinite’ parton matter Vitalii Ozvenchuk, in collaboration with E.Bratkovskaya, O.Linnyk, M.Gorenstein,
Non-Extensive Black Hole Thermodynamics estimate for Power-Law Particle Spectra Power-law tailed spectra and their explanations Abstract thermodynamics.
Equilibration of non-extensive systems T. S. Bíró and G. Purcsel MTA KFKI RMKI Budapest NEBE parton cascade Zeroth law for non-extensive rules Common distribution.
A L C O R History of the idea Extreme relativistic kinematics Hadrons from quasiparticles Spectral coalescence T.S. Bíró, J. Zimányi †, P. Lévai, T. Csörgő,
Charged Particle Multiplicity and Transverse Energy in √s nn = 130 GeV Au+Au Collisions Klaus Reygers University of Münster, Germany for the PHENIX Collaboration.
SPIN STRUCTURE OF PROTON IN DYNAMICAL QUARK MODEL SPIN STRUCTURE OF PROTON IN DYNAMICAL QUARK MODEL G. Musulmanbekov JINR, Dubna, Russia
Nucleon-Nucleon collisions. Nucleon-nucleon interaction at low energy Interaction between two nucleons: basic for all of nuclear physics Traditional goal.
Dilepton Radiation Measured in PHENIX probing the Strongly Interacting Matter Created at RHIC Y. Akiba (RIKEN Nishina Center) for PHENIX Collaboration.
11/18/2003Tetsufumi Hirano (RBRC)1 Rapidity Dependence of Elliptic Flow from Hydrodynamics Tetsufumi Hirano RIKEN BNL Research Center (Collaboration with.
Robert Pak (BNL) 2012 RHIC & AGS Annual Users' Meeting 0 Energy Ro Robert Pak for PHENIX Collaboration.
Christoph Blume University of Heidelberg
Andrei Rostovtsev Moscow, ITEP Low-x, June 2013 (Eilat) On behalf of H1 Collaboration.
Heavy-Ion Physics - Hydrodynamic Approach Introduction Hydrodynamic aspect Observables explained Recombination model Summary 전남대 이강석 HIM
Andrei Rostovtsev Moscow, ITEP December, 2010 Systematic study of inclusive hadron production spectra in collider experiments Workshop on Hadron-Hadron.
Olena Linnyk Charmonium in heavy ion collisions 16 July 2007.
R. Lednicky: Joint Institute for Nuclear Research, Dubna, Russia I.P. Lokhtin, A.M. Snigirev, L.V. Malinina: Moscow State University, Institute of Nuclear.
Strange Probes of QCD Matter Huan Zhong Huang Department of Physics and Astronomy University of California Los Angeles, CA Oct 6-10, 2008; SQM2008.
Thermodynamics of abstract composition rules Product, addition, logarithm Abstract composition rules, entropy formulas and generalizations of the Boltzmann.
BNL/ Tatsuya CHUJO JPS RHIC symposium, Chuo Univ., Tokyo Hadron Production at RHIC-PHENIX Tatsuya Chujo (BNL) for the PHENIX Collaboration.
Andras. Ster, RMKI, Hungary ZIMANYI-SCHOOL’09, Budapest, 01/12/ Azimuthally Sensitive Buda-Lund Hydrodynamic Model and Fits to Spectra, Elliptic.
T. Csörgő 1,2 for the PHENIX Collaboration Femtoscopic results in Au+Au & p+p from PHENIX at RHIC 1 MTA KFKI RMKI, Budapest,
Helen Caines Yale University Strasbourg - May 2006 Strangeness and entropy.
What have we learned from the RHIC experiments so far ? Berndt Mueller (Duke University) KPS Meeting Seoul, 22 April 2005.
Analysis of the anomalous tail of pion production in Au+Au collisions as measured by the PHENIX experiment at RHIC M. Nagy 1, M. Csanád 1, T. Csörgő 2.
Duke University 野中 千穂 Hadron production in heavy ion collision: Fragmentation and recombination in Collaboration with R. J. Fries (Duke), B. Muller (Duke),
Collective Dynamics at RHIC
Fragmentation and Recombination for Exotics in Heavy Ion Collisions
Outline First of all, there’s too much data!! BRAHMS PHOBOS PHENIX
Current status of Thermalization from available STAR results
Heavy Ion Physics at NICA Simulations G. Musulmanbekov, V
Identified Charged Hadron Production
Strong Magnetic Fields in HIC
Masahiro Konno (Univ. of Tsukuba) for the PHENIX Collaboration Contact
Dipartimento Interateneo di Fisica, Bari (Italy)
Presentation transcript:

Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest, Univ. Giessen) School of Collective Dynamics in High-Energy Collisions, Berkeley, May, 2005

Collaborators József Zimányi, KFKI RMKI Budapest Péter Lévai, KFKI Tamás Csörgő, KFKI Berndt Müller, Duke Univ. NC USA Christoph Traxler Gábor Purcsel, KFKI Antal Jakovác, BMGE (TU) Budapest Géza Györgyi, ELTE Budapest Zsolt Schram, DE Debrecen

Valence Quark Model of Hadrons 1. Mass formulas (flavor dependence) 2. Spin dependence 3. Alternatives: partons, strings,... Basic cross sections e p : e  = 3 : 2

Valence Quark Model of Hadrons Quark masses: M = (u,d) m, (s) m s Quark hypercharges: Y = (u,d) 1/3, (s) -2/3 Naive quark mass formula: M = M - M Y 01 with M = (2m + m ) / 3 and M = m - m ss01 M ≠ 0 breaks SU(3) flavor symmetry 1

Valence Quark Model of Hadrons More terms: M = a + bY + c T(T+1) + d Y 2 Test on baryon decuplet masses with last 2 terms linear (like x + y Y)  (3/2, 1): 15c/4 + d = x + y  (1/2,-1): 3c/4 + d = x - y  ( 0,-2): 4d = x - 2y Solution: x = 2c, y = 3c/2 d = -c/4. *

Valence Quark Model of Hadrons M = a + bY + c ( T(T+1) - Y / 4 ) 2 Gell-Mann Okubo mass formula: N (qqq: ½, +1) a + b + c / 2  (qqs: 1, 0) a + 2 c  (qqs: 0, 0) a  (qss: ½, -1) a – b + c / 2 Check 3M(  ) + M(  ) = 2M(N) + 2M(  ) : difference 8 MeV/ptl.

Valence Quark Model of Hadrons M = a + bY + c ( T(T+1) - Y / 4 ) + d S(S+1) 2 Gürsey - Radicati mass formula: SU(6) quark model: (flavor SU(3), spin SU(2)) 1.quark: [6] = [3,2] 2.meson: (3,2)×(3,2) = (1,1)+(8,1)+(1,3)+(8,3) 3.baryon: 6×6×6 = ( only 56 is color singlet )

Valence Quark Model of Hadrons Fit to 56-plet masses: a = MeV, b = MeV c = 38.8 MeV, d = 65.3 MeV More success: magnetic moments No hint for formation probability Linear dominance!  additive mass hadronization

Quark Recombination 1. (Non)Linear coalescence (Bialas, ZLB) 2. ALCOR (Zimanyi, Levai, Biro) 3. Distributed mass quarks (ZLB) hep-ph/ PLB347:6,1995 PLB472:243,2000 nucl-th/

Quark Recombination Linear vs nonlinear coalescence meson[ij] = a q[i] q[j] baryon[ijk] = b q[i] q[j] q[k] With lowest multiplets: quarks are redistributed in a few mesons and baryons # counting all flavors q =  + K + 3N + 2Y + X s =  + K + Y + 2X + 3  coalesced numbers N = C b q 33 qN et cetera

Quark Recombination Q = b q q A simple example: q, q  , N, N _ _ _ q = C Q Q + 3C Q =  + 3 N N 3  N 3  ____ N / C * N / C = (  / C ) 3 NN _  (r  ) = (q -  ) ( q -  ) with r = (3C ) / C  N 32/3 _

Quark Recombination  (q + q ) / 2 (q q ) _ qq _ small r limit: N = r q / 3(q – q) 33 _ _ _ N = (q – q)/3 + N  = q - 3 N _ _ _ _ Features: N ≠ …q,  ≠ … q q 3 q > q _ RHS LHS _

Quark Recombination Note:  ≠  possible due to S ≠ S while s = s Key: b is sensitive to the q – q inbalance! s ratios of ratios and their powers are testable! d(K) = K/K = 1.80 ± 0.2 d(Y) = (Y/Y) / (N/N) = 1.9 ± 0.3 d(X) = (X/X) / (N/N) = 1.89 ± 0.15 d(  ) = (  /  ) / (N/N) = 1.76 ±0.15 CERN SPS data 1/2 1/3

Quark Recombination ALCOR: 2Nflavor parameters = Nf che- mical potentials + Nf fugacities this is just not grand canonical, but explicit in the particle numbers.

Quark Recombination Distributed mass quarks form hadrons. 1.) assume hadronic wave packet is narrow in relative momentum  p(a) = p(b) = p/2 2.) mass is nearly additive  m = m(a)+m(b) 3.) coalescence convolves phase space densities F(m,p) = dm dm  (m-m -m ) f(m,p/2) f(m,p/2) ∫ aaabbb ∫ 00  The product f(x) f(m-x) is maximal at x = m /2. nucl-th/

Quark Recombination ln  (m) = - (a/T) (a/m + m/a ) ½ f(m,p) =  (m) exp ( - E(m,p) / T )

Quark Recombination pion

Quark Recombination proton

Quark Recombination ratio

Hadronization dynamics 1.Parton kinetics + recombination (MFBN) 2.Colored molecular dynamics (TBM) 3.Color confinement as 1/density (ZBL) 4.Multpilicative noise in quark matter (JB) 5.Non-extensive Boltzmann equation (BP) PRC59:1620, 1999 JPG27:439, 2001 PRL94:132302, 2005 hep-ph/

Colored Molecular Dynamics g

Color confinement as 1/density reaction A + B  C conserved: N + N = N (0), N + N = N (0) AABBCC rate eq.: N = -R ( N - N )(N - N ) CC - +  resulted number: C N (  ) = N N (1-K) / (N -KN ) C with K = exp(r (N - N )), r = R(t)dt +- ∫

Color confinement as 1/density If A and B colored, C not: N (  ) = N (0) = N (0) = N limit: r(N - N )  0, K exp linearized N (  ) = r N / ( 1 + rN ) (r   is required!) 1-dim exp : r =  v/V t ln ( t / t ) 3-dim exp : r =  v/3V t ( 1 - (t /t ) ) conclusion:  ~ t ~ 1 / density for all quarks to be hadronized CAB

Color confinement as 1/density

Additive and multiplicative noise 1. Langevin p =  -  p  = G  = F  2C  2B  2D 2. Fokker Planck ∂f ∂t ∂ ∂p ∂ = ( K f ) - ( K f ) K = F – Gp K = D – 2Bp + Cp c c c Equivalent descriptions: AJ+TSB, PRL 94, 2005

Exact stationary distribution: f = f (D/K ) exp(- atan( ) )  0 v 2  D – Bp  p with v = 1 + G/2C  = GB/C – F  = DC – B 22 For F = 0 characteristic scale: p = D/C. c 2 power exponent (small or large) parameter

Exact stationary distribution for F = 0, B = 0: f = f ( 1 + ) 0 -( 1+G/2C ) 2 D C p With E = p / 2m this is a Tsallis distribution! f = f ( 1 + (q-1) ) 0 E 2 T q 1 – q Tsallis index: q = 1 + 2C / G Temperature: T = D / mG

Limits of the Tsallis distribution: p  p : Gauss p  p : Power-law c f ~ exp( - Gp /2D ) f ~ ( p / p ) 2 c -2v c

E  E : E  E : c f ~ exp( - E / T ) f ~ (E / E ) -v c c Relation between slope, inflection and power !! v = 1 + E / T c Energy distribution limits:

Stationary distributions For F=0, B=0 the Tsallis distribution is the exact stationary solution Gamma: p = 0.1 GeV F ≠ 0 Gauss: p = ∞ Zero: p = 10 GeV B = D/C Power: p = 1 GeV F ≠ 0 c c c c 2

Generalization p = z - G(E) ∂E ∂p. = 0 = 2 D(E)  (t-t') In the Fokker – Planck equation: K (p) = D(E) K (p) -G(E) ∂E ∂p 1 2 Stationary distribution: f(p) = exp - G(E) ∫ D(E) dE D(E) A () = TSB+GGy+AJ+GP, JPG31, 2005

Generalization Stationary distribution: f(p) = A exp - ∫ T(E) dE 1) Gibbs: T(E) = T  exp(-E/T) 2) Tsallis: T(E) = T/q + (1-1/q) E  ( 1 + (q-1) E / T) -q /(q-1) ()

Inverse logarithmic slope temperature T(E) 1 = ln f (E) d dE T (E) = D(E) G(E) + D'(E) T = D(0) / G(0) Gibbs T = D(E) / G(E) Einstein

slope c T T E E T Einstein Gibbs Walton – Rafelski ? T Gibbs T Einstein c E 111 =+ Special case: both D(E) and G(E) are linear

Fluctuation Dissipation theorem D (E) = 1 f(E) with f(E) stationary distribution ∫ E ∞ G (x) f(x) dx ij D (E) = T(E) ij G (E) + ij D' (E) ij ( ) ( Hamiltonian eom does not change energy E!) p = -G  E + z i ij ij.

Fluctuation Dissipation theorem particular cases ( for constant G ): D = T ij G D (E) = T + (q-1) E ij G ( ) Gibbs: Tsallis:

T. S. Bíró and G. Purcsel (University of Giessen, KFKI RMKI Budapest) Non-Extensive Boltzmann Equation Non-extensive thermodynamics 2-body Boltzmann Equation + non-ext. rules Unconventional distributions H-theorem and non-extensive entropy Numerical simulation hep-ph/

Non-extensive thermodynamics f = f f statistical independence E = h ( E, E ) non-extensive addition rule non-extensive addition rules for energy, entropy, etc. h ( x, y ) ≠  x + y

Sober addition rules associativity: h ( h ( x, y ), z ) = h ( x, h ( y, z ) ) 1,2 2,3 3 1 general math. solution: maps it to additivity X ( h ) = X ( x ) + X ( y ) X( t ) is a strict monotonic, continous real function, X(0) = 0

Boltzmann equation ∫ 412  f = w ( f f - f f ) w = M  ( p + p - p - p ) 1234   ( h( E, E ) - h( E, E ) ) 3 2

Test particle simulation x y h(x,y) = const. E E E E uniform random: Y(E ) = (  h/  y) dx ∫ 0 E 3 3 E E h=const

Recipe for binary events New energies: E = h_inv( h(E1,E2), 0 ) E3 = E * RND(0,1) reject if Y(E3) > Y(E) * RND(0,1) E4 = h_inv ( E, E3 ) New momenta: P[i] = p1[i] + p2[i], length P p3 = sqrt(E3*E3-m3*m3), p4 = sqrt(E4*E4-m4*m4) reject if P not in ( |p3-p4|, p3+p4) p3_x = (p3*p3 – p4*p4 + P*P)/(2*P), p3_t from p3 in-plane vec a[i]=P[i]/P, orthogonal in-plane vec b[i], p3[i] = p3_x * a[i] + p3_t * b[i], p4[i] = P[i] – p3[i].

Consequences canonical equilibrium: f ~ exp ( - X( E ) / T ) 2-body collisions: X(E ) + X(E ) = X(E ) + X(E ) non-extensive entropy density: s = df X ( - ln f ) H-theorem for X( S ) = - f ln f tot ∫ ∫ 1234

rule additive equilibrium entropy name h ( x, y ) X ( E ) f ( E ) s [ f ] general x + y E exp( - E / T) - f ln f Gibbs x + y + a xy ln(1+aE) (1+aE) (f - f)/(q-1) Tsallis -1/aTq ( x + y ) E exp( - E / T) … Lévy q q qq 1/q x y ln E E f Rényi q 1- q 1 - 1/ (1-q) T h e r m o d y n a m i c s e s a 1

S o m e m o r e... k-deformed statistics (G.Kaniadakis), X( E ) = (T / k) asinh ( kE / T ), h( x, y ) = x sqrt( 1 + ( ky / T ) ) + y sqrt( 1 + ( kx / T ) ) s[ f ] = ( f /(1-k) - f /(1+k) ) / 2k also gives a power-law tail: ~ (2kE/T) 1-k1+k 22 -1/k

Cascade simulation Momenta and energies of N “test” particles Microevent: new random momenta, so that X(E1) + X(E2) = X(E1’) + X(E2’) Relative angle rejection or acceptance Initially momentum spheres, Lorentz- boosted Distribution of E is followed and plotted logarithmically

Movie: Boltzmann a = 0 proton y=2

Movie: Boltzmann a = 0 pion y=2

Snapshot: Tsallis a = -0.2

Non-extensive Boltzmann eq. BG TS (a = 2)

Tsallis distribution

Hadron statistics 1. Gibbs thermodynamics: exponential 2. Non-extensive thermodynamics: power-law 3. Collective flow effects: scaling breakdown 4. low pt and high pt: connected? hep-ph/ JPG31:1, 2005

Particle spectra and Eq. Of State (2  h) d N 3 V dk 3 = d  , k) f(  /T)   3     Spectrum Spectral functionthermodynamics Gibbs Tsallis... Peak: particle bgd.: field Shifted peak: quasiparticle

Quasiparticle approximation:  k In this case: ~ f (  / T) k d N dk 3 3 T : parameter of environment  = b F ( k/b ) : result of interactions k Modified quark matter dispersion: change F( x ) Modified thermodynamics: change f( x )

Experimental spectra: pp mesons, 30 GeV, p -tail v = 10.1 ± 0.3 pions, 30 GeV, m -tail v = 9.8 ± 0.1 pions, 540 GeV, m -tail v = 8.1 ± 0.1 quarkonia, 1.8 TeV, m -tail v = 7.7 ± 0.4 t t t t Gazdiczki + Gorenstein (hep-ph / ) t t t t

Experimental spectra: AuAu pi, K, p, 200 GeV, m -scaling (i.e. E = m ) v = 16.3 (E = 2.71 GeV, T = 177 MeV) t t t t Schaffner-Bielich, McLerran, Kharezeev (NPA 705, 494, 2002) t t c

Experimental spectra: cosmic rays before knee, m -scaling (i.e. E = m ) v = 5.65 (E = 0.50 GeV, T = 107 MeV) in ankle, v = 5.50 (E = 0.48 GeV, T = 107 MeV) t t t Ch. Beck cond-mat / tt c c

Experimental spectra: e-beam integral over longitudinal momenta TASSO 14 GeV v = 51 (E = 6.6 GeV) TASSO 34 GeV v = 9.16 (E = 0.94 GeV) DELPHI 91 GeV v = 5.50 (E = 0.56 GeV) DELPHI 161 GeV v = 5.65 (E = 0.51 GeV) t t t t Bediaga et.al. hep-ph / c c c c

Gaussian fit to parton distribution: = D / G = GeV Power-tail in e+e- experiment (ZEUS): v = 5.8 ± 0.5 -> G / C = 9.6 ± 1 Derived inclination point at p = √ D / C = GeV. t 2 c Test v = 1 + E / T ☺ c

pions RHIC Au Au heavy ion collision 200 GeV q = T = 118 ± 9 MeV v = ± E = ± GeV T = 364 ± 18 MeV  from AuAu at 200 GeV (PHENIX) 0 c p (GeV) t 1E-9 1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 1E-2 1E-1 1E-0 d  2 2  p dp dy t t min. bias

Central 5%  transverse spectrum 0

Central 5%  transverse slope 0 D(E) T(E) = G(E) + D (E) '

All central transverse slopes Flow All central transverse slopes

Transverse flow correction E = u p =  (m cosh(y-  ) - v p cos(  -  ) ) Energy in flowing cell:   blue shifted Most detected: forward flying (blue shifted) at  = y,  = . E =  (m - v p ) T T T T Spectrum ~ ∫d  d  f(E)

Transverse flow corrected spectra forward flow !

E/N with Tsallis distribution Massless particles, d-dim. momenta, one ptl. average E = E c v – d – 1 d = 1 – d (q – 1) d T (Ito: =0) QGP E = ∫ dE E (1 + E / E ) d c ∫ d-1 c -v

E/N with Tsallis distribution Massive particles, 2-dim. momenta, one ptl. average energy E= a (2T + bm /(m+T) ) hadrons 2 with 1/a = 3 – 2q, b = 4q - 11q (BG: a=1, b=1) E > BG case for q > 1 _ _

Average transverse momentum R.Witt

Average transverse momentum

Limiting temperature with Tsallis distribution N = E – j T TE T = E / d Hagedorn  ; c c j=1 d c H Massless particles, d-dim. momenta, N-fold For N  2: Tsallis partons  Hagedorn hadrons ( with A. Peshier, Giessen )

Summary Basis of coalescence: valence quark model ALCOR: microcanonical nonlinear, non-eq. Mol.dyn.: nice spectra, but too slow Power-tailed stationary distributions from a) multiplicative noise b) Non-extensive Boltzmann-Equation Simple relation: v = 1 + E / T. Limiting temperature, m-scaling of exp.values c