Introduction to Magnetic Resonance Imaging Bruno Quesson, CR1 CNRS
Important magnetic field (~1 Tesla) General ElectricSiemensPhilips
MRI : Imaging of water and fat (soft tissues)
diagnostis healthy pathological brain animal breast Fat suppression
Tunable contrasts
Multislices 2D / 3D Any slice orientation is feasible
Functional Diagnosis Tissue looks normal but its function is altererd – Cardiac arythmia – Perfusion : thrombosis, tissue is nomore feed with blood – Diffusion : stroke – lungs : He3 imaging – … angiographyperfusionLung, He 3 Diffusion brain
Dynamic imaging (heart)
Spatial resolution can be adjusted Embryo of mice
fMRI : functional imaging of the brain activity signal changes with blood oxygenation – Task => use of oxygen – Indirect detection of the brain activity – Low signal variation (2%) => high filed Dynamic imaging (kinetic) 3D imaging (cover the entire brain) Statistical analysis Associate PET (radioactivity) et EEG (electrical activity)
Interventional imaging Definition : « guide a therapeutic procedure with the help of images» – Rapid acquisition -> real time – Real time reconstruction – Real time processing Examples : -to visualize catheter positioning – Substitution Xray to MRI -to identify a lesion and to guide the puncture – Ex : breast, liver, brain tumours
Interventionnal imaging : thermometry Pig liver Human temperatureThermal DoseFollow up T2Follow up T1
HOW IS THIS POSSIBLE???
Nuclear Magnetic Resonance : NMR Magnetic equilibrium : B0 static and intense Perturbation of the equilibrium : Excitation B1 (energy transferred to the system) Back to initial equilibrium state : Relaxation (energy transferred from the system) B 0 = 0 z B 0 ≠ 0 Macroscopic Magnetization M0 y x z y x z M0M0 z M0M0 z M0M0 B1B1 z M0M0 z M0M0 Emitted signal = NMR signal
Modeling the NMR signal Vector mathematical formalism z M B0B0 y x Mz Mx My Mx(t)=? My(t)=? Mz(t)=? Solution of the Bloch differential equations : Mx(t) = M t (0).exp(-t/T 2 ).cos( 0 t) My(t) = M t (0).exp(-t/T2).sin( 0 t) Mz(t) = M0 – (M0 – Mz(0)).exp(-t/T 1 ) Transverse magnetization Longitudinal magnetization 0 = B 0
transverse magnetization : exponential decay Helicoïdal motion y MtMt B0B0 x Mt Time / s Rotation around B0Amplitude : exponential decay Mt(t) = M t (0).exp(-t/T2).exp( 0 t) Detectable signal
Longitudinal magnetization z B0B0 x Mz Mz Time / s Mz(t) = M0 – (M0 – Mz(0)).exp(-t/T 1 ) y
Typical NMR parameters at 1.5 Tesla breast cardiac muscle vitrous humor spleen kidney pancreas liver disk blood lung fat bone marrow Vertebral marrow SQuel Muscle CSF WM GM M0 (%)T2 / msT1 / msTissue
Longitudinal (T1) and Transverse (T2) relaxation times Difference = contrast T1 contrast T2 contrast Proton Density
Acquisition sequence Sequence = a number of events which occur at different instants t B1 TRTR TeTe S2 = M0.(1-exp(-TR/T1)).exp(-Te/T2). exp(i 0 t) TeTe S1 = M0.exp(-Te/T2).exp(i 0 t)
Which contrast ? TR/T1 TE/T2 Contrast T1 Proton Density Contrast T1 and T2 Contrast T2 0
Examples
But how a MR image is obtained??? MR image = map of magnetization How can we separate signal coming from different locations???? B0B0 y x z y z S1 = M0.exp(-Te/T2).exp(i 0 t) S2 = M0.exp(-Te/T2).exp(i 0 t) S3 = M0.exp(-Te/T2).exp(i 0 t) S4 = M0.exp(-Te/T2).exp(i 0 t) S total = S1+S2+S3+S4
So what?? t t t t t Fourier Transformation It is NOT possible to distinguish individual signals
Let us make B0 vary in space B0B0 y x z y z S1 = M0.exp(-Te/T2).exp(i 1 t) S2 = M0.exp(-Te/T2).exp(i 2 t) S3 = M0.exp(-Te/T2).exp(i 3 t) S4 = M0.exp(-Te/T2).exp(i 4 t) S total = S1+S2+S3+S4 z B(z) = B0 + Gz.z (z) = 0 + .Gz.z + Gz
So what?? t t t t Fourier Transformation It is possible to distinguish individual signals from their spectrum in 1 direction Profile
Mathematical description S(Gz,t) = MT(z).exp(-t/T2).exp(i[ 0 + .Gz.z].t) dz S(Gz,t) = exp(-t/T2).exp(i 0.t) MT(z). exp(i. .Gz.z..t) dz S(kz) = exp(-t/T2).exp(i 0.t) MT(z). exp(i.kz.z.) dz We substitute kz = .Gz.t S(kz) = A MT(z). exp(i.kz.z.) dz = A. FT[ MT(z) ]
Back to the profile MT(z) = FT -1 [ S(kz) ] / A MT(z) = A-1. S(kz). exp(-i.kz.z.) dkz 1-We have to measure the signal for different kz (= g.Gz.t) conditions 2-We have to Fourier Transform these data sets to retrieve the profile of the object
Comparison of measurements under different Gz conditions z Gz z z
Graphical representation z kz Gz 0
In 2D : We have to repeat this 2 orthogonal directions z kz Gz y Gy ky Gz Gy
When the complete map is acquired, we get the image kz 2D Fourier Transformation ky Image Fourier space “k-space”
MRI acquisition sequence t t t t B1 Gs Gp Gr TRTR TeTe Gradient echo Trajectory in the Fourier space Contrast
Contrast manipulation Preparation Acquisition (of Fourier space) t t t t B1 Gs Gp Gr TeTe Ti t Ex: inversion recovery (IR)
Examples of signal modulation with Inversion -Recovery Ti = 0 s Ti = 66 ms Ti = 174 ms MT(t) = MT(0).exp(-t/T2) MT(0) = M0(1 – 2.exp(-Ti/T1)) Signal : with : Contrast modulation Mz Time / s fat liver Mt fat liver Mt fat liver Mt Time / s fat liver
Selective perturbation Ex : « black blood » (BB) for cardiac imaging t t t t B1 Gs Gp Gr Ti (blood) Acquisition 180° BB prepulse Acquisition preparation t
Resulting images Without BB With BB pulse
Double inversion-recovery t t t t B1 Gs Gp Gr Acquisition 180° Motif DI Ti(1)Ti(2)
Gradient Echo sequence t t t t B1 Gs Gp Gr TRTR TeTe Gradient echo Trajectory in the Fourier space Contrast
Spin echo sequence Refocuses all magnetizations t t t t B1 Gs Gp Gr TRTR TeTe T e /2 Spin echo
Summary RF pulses – Variable angles – Frequency selective or not – Spatially selective or not Gradients A lot of possible combinaisons Strategy of the acquisition depends on the application