6.4 Rhombuses, Rectangles, and Squares

Slides:



Advertisements
Similar presentations
6.3/4 Rhombuses, Rectangles, and Squares. Three Definitions 1.A rhombus is a parallelogram with four congruent sides. 1.A rectangle is a parallelogram.
Advertisements

Parallelogram A quadrilateral with both pairs of opposite sides parallel *opposite sides are congruent *opposite angles are congruent *diagonals bisect.
Parallelograms Rhombus Square Parallelogram Rectangle
1. Name the five properties of a parallelogram. ANSWER
Warm-up Pg 520 #39, 40 Pg 529 # Properties of Rhombuses, Rectangles, and Squares 8.4.
What quadrilateral am I? Use the given properties to decide what type of quadrilateral is being described. Continue.
Special Quadrilaterals
6-3 Proving That a Quadrilateral Is a Parallelogram
6-4 Rhombus, Rectangles and Squares. P ROPERTIES OF S PEC IAL P ARALLELOGRAMS | | | | A rectangle is a parallelogram with four right angles. | | | | A.
Properties of Rhombuses, Rectangles, & Squares Goal: Use properties of rhombuses, rectangles, & squares.
Special Parallelograms:Rhombuses, Rectangles and Squares
Chapter 8.4 Notes: Properties of Rhombuses, Rectangles, and Squares
5.10 Properties of Rhombuses, Rectangles, and Squares
Properties of Special Parallelograms
Properties of Quadrilaterals
Name That Quadrilateral  Be as specific as possible.  Trapezoid.
For each, attempt to create a counter example or find the shape is MUST be….. Quadrilateral Properties.
Polygons – Parallelograms A polygon with four sides is called a quadrilateral. A special type of quadrilateral is called a parallelogram.
BellWork. Geometry Section 6.6 Outcomes: - You will identify special quadrilaterals by their properties. - You will prove that a quadrilateral is a special.
Proof Geometry.  All quadrilaterals have four sides.  They also have four angles.  The sum of the four angles totals 360°.  These properties are.
6.4 Rhombuses, Rectangles, and Squares Day 4 Review  Find the value of the variables. 52° 68° h p (2p-14)° 50° 52° + 68° + h = 180° 120° + h = 180 °
2/9/15 Unit 8 Polygons and Quadrilaterals Special Parallelograms
6.4 Properties of Rhombuses, Rectangles, and Squares A rhombus is a parallelogram with four congruent sides. A rectangle is a parallelogram with four right.
Chapter 8.2 Notes: Use Properties of Parallelograms
Parallelograms have Properties Click to view What is a parallelogram? A parallelogram is a quadrilateral with both pairs of opposite sides parallel.
6.4 Rhombuses, Rectangles and Squares Unit 1C3 Day 5.
Rhombuses, Rectangles, and Squares
Special Parallelograms
6.4 Rhombus, Rectangles and Squares
Rhombus 1.Both pairs of opposite sides are parallel 2. Both pairs of opposite sides are congruent 3. Both pairs of opposite angles are congruent 4. Consecutive.
Geometry 6-4 Rhombus Opposite sides parallel? Opposite sides congruent? Opposite angles congruent? Consecutive angles supplementary? Diagonals congruent?
Geometry 6-4 Properties of Rhombuses, Rectangles, and Squares.
6-4 Properties of Rhombuses, Rectangles, and Squares
EXAMPLE 3 List properties of special parallelograms
6-4 Properties of Rhombuses, Rectangles, and Squares
Properties of Rhombuses, Rectangles, and Squares Lesson 8.4.
What is Parallelogram? A parallelogram is a Quadrilateral with 2 pairs of parallel segments.
A D B C Definition: Opposite Sides are parallel.
Geometry Section 8.4 Properties of Rhombuses, Rectangles, and Squares.
1. Give five ways to prove that a quadrilateral is a parallelogram.
Lesson 6-4: Rhombus & Square
Name that QUAD. DefinitionTheorems (Name 1) More Theorems/Def (Name all) Sometimes Always Never
Always, Sometimes, or Never
Special Quadrilaterals. KITE  Exactly 2 distinct pairs of adjacent congruent sides  Diagonals are perpendicular  Angles a are congruent.
7.4 Properties of Special Parallelograms OBJ: Students will be able to use properties of special parallelograms and diagonals of special parallelograms.
Lesson: Objectives: 6.5 Squares & Rhombi  To Identify the PROPERTIES of SQUARES and RHOMBI  To use the Squares and Rhombi Properties to SOLVE Problems.
 6.3 Showing Quadrilaterals are Parallelograms. We can use the theorems from 6.2 to prove that quadrilaterals are parallelograms  What 5 facts are ALWAYS.
A rhombus is a parallelogram with __ ________________ ___________. A rectangle is a parallelogram with ___ __________ ____________. A square is a parallelogram.
 Rhombus ◦ A rhombus is a parallelogram with four congruent sides.
Warm Up:  Solve for x and y in the following parallelogram. What properties of parallelograms did you use when solving?  What is the measure of CD? 
Parallelograms have Properties
Unit 2 – Similarity, Congruence, and Proofs
Rhombus – a quadrilateral with ______ _________ _________ ________
Section 8.4 Notes.
| | A rhombus is a parallelogram with four congruent sides.
5.10 Properties of Rhombuses, Rectangles, and Squares
Rhombuses, Rectangles, and Squares
Rhombuses, Rectangles, and Squares
Lesson 6-4: Rhombus & Square
| | A rhombus is a parallelogram with four congruent sides.
Lecture 6-4 Rhombi and Squares.
Section 6.4 rhombuses, rectangles and squares
6-5 Conditions for Rhombuses, Rectangles, and Squares
Parallelogram Definition: A quadrilateral with two pairs of parallel sides. Picture: Marked parallel and congruent.
8.4 Properties of Rhombuses, Rectangles, and Squares
Properties of Special Parallelograms
Lesson 6-4: Rhombus & Square
Lesson 6-4: Rhombus & Square
Properties of Parallelograms
Presentation transcript:

6.4 Rhombuses, Rectangles, and Squares

Review Find the value of the variables. p + 50° + (2p – 14)° = 180° 52° (2p-14)° 50° 68° p + 50° + (2p – 14)° = 180° p + 2p + 50° - 14° = 180° 3p + 36° = 180° 3p = 144 ° p = 48 ° 52° + 68° + h = 180° 120° + h = 180 ° h = 60°

Special Parallelograms Rhombus A rhombus is a parallelogram with four congruent sides.

Special Parallelograms Rectangle A rectangle is a parallelogram with four right angles.

Special Parallelogram Square A square is a parallelogram with four congruent sides and four right angles.

Corollaries Rhombus corollary Rectangle corollary Square corollary A quadrilateral is a rhombus if and only if it has four congruent sides. Rectangle corollary A quadrilateral is a rectangle if and only if it has four right angles. Square corollary A quadrilateral is a square if and only if it is a rhombus and a rectangle.

Example PQRS is a rhombus. What is the value of b? 2b + 3 = 5b – 6

Review In rectangle ABCD, if AB = 7f – 3 and CD = 4f + 9, then f = ___ 1 2 3 4 5 7f – 3 = 4f + 9 3f – 3 = 9 3f = 12 f = 4

Example PQRS is a rhombus. What is the value of b? 3b + 12 = 5b – 6

Theorems for rhombus A parallelogram is a rhombus if and only if its diagonals are perpendicular. A parallelogram is a rhombus if and only if each diagonal bisects a pair of opposite angles. L

Theorem of rectangle A parallelogram is a rectangle if and only if its diagonals are congruent. A B D C

Match the properties of a quadrilateral The diagonals are congruent Both pairs of opposite sides are congruent Both pairs of opposite sides are parallel All angles are congruent All sides are congruent Diagonals bisect the angles Parallelogram Rectangle Rhombus Square B,D A,B,C,D A,B,C,D B,D C,D C

Decide if the statement is sometimes, always, or never true. A rhombus is equilateral. 2. The diagonals of a rectangle are _|_. 3. The opposite angles of a rhombus are supplementary. 4. A square is a rectangle. 5. The diagonals of a rectangle bisect each other. 6. The consecutive angles of a square are supplementary. Always Sometimes Sometimes Always Always Always Quadrilateral ABCD is Rhombus. 7. If m <BAE = 32o, find m<ECD. 8. If m<EDC = 43o, find m<CBA. 9. If m<EAB = 57o, find m<ADC. 10. If m<BEC = (3x -15)o, solve for x. 11. If m<ADE = ((5x – 8)o and m<CBE = (3x +24)o, solve for x 12. If m<BAD = (4x + 14)o and m<ABC = (2x + 10)o, solve for x. A B E D C 32o 86o 66o 35o 16 26

Coordinate Proofs Using the Properties of Rhombuses, Rectangles and Squares Using the distance formula and slope, how can we determine the specific shape of a parallelogram? Rhombus – Rectangle – Square - 1. Show all sides are equal distance 2. Show all diagonals are perpendicular. 1. Show diagonals are equal distance 2. Show opposite sides are perpendicular Show one of the above four ways. Based on the following Coordinate values, determine if each parallelogram is a rhombus, a rectangle, or square. P (-2, 3) P(-4, 0) Q(-2, -4) Q(3, 7) R(2, -4) R(6, 4) S(2, 3) S(-1, -3) RECTANGLE RECTANGLE