Lead ( Pb) Radius Experiment : PREX

Slides:



Advertisements
Similar presentations
PREX PAC 29 Jan 2006 R. Michaels Jefferson Lab Lead ( Pb) Radius Experiment : PREX Z of Weak Interaction : Clean Probe Couples Mainly to Neutrons ( T.W.
Advertisements

R. Michaels PREX at HE06 July 2006 Lead ( Pb) Radius Experiment : PREX Z of Weak Interaction : Clean Probe Couples Mainly to Neutrons ( T.W. Donnelly,
R. Michaels, Jlab Argonne Dec 19, 2011 Lead ( Pb) Radius Experiment : PREX Pb E = 1 GeV, electrons on lead Elastic Scattering Parity.
R. Michaels, Jlab UGM, June, 2011 Lead ( Pb) Radius Experiment : PREX Pb E = 1 GeV, electrons on lead Elastic Scattering Parity Violating Asymmetry.
Lead ( Pb) Radius Experiment : PREX
Robert Michaels PREX at Trento PREX Workshop 09 Physics Interpretation of PREX 208 Pb E = 1 GeV, electrons on lead Elastic Scattering Parity Violating.
R. Michaels, Jlab Seminar, Apr 27, 2011 Lead ( Pb) Radius Experiment : PREX Pb E = 1 GeV, electrons on lead Elastic Scattering Parity Violating.
Thomas Jefferson National Accelerator Facility
R. Michaels, Jlab TAMU Mar 6, 2012 Electron Scattering at Jefferson Lab and The Lead Radius Experiment PREX Thomas Jefferson National Accelerator.
Robert J. Feuerbach Jefferson Lab Constructed from contributions from the HAPPEX Collaboration Hall A Collaboration Meeting December 5, 2005 HAPPEX-II.
Lead ( 208 Pb) Radius Experiment : PREX E = 1 GeV, Elastic Scattering Parity-Violating Asymmetry PREX : precise measurement of the density -dependence.
Measuring the Neutron and 3 He Spin Structure at Low Q 2 Vincent Sulkosky College of William and Mary, Williamsburg VA Experimental Overview The.
Lead ( 208 Pb) Radius Experiment : PREX E = 1 GeV, Elastic Scattering Parity-Violating Asymmetry PREX : density -dependence of the symmetry energy. Nuclear.
Measuring the Neutron and 3 He Spin Structure at Low Q 2 Vincent Sulkosky for the JLab Hall A Collaboration College of William and Mary, Williamsburg VA.
Jin Huang PhD Candidate, MIT For MENU 2010 May 31, Williamsburg.
Lead ( Pb) Radius Experiment : PREX Pb E = 1 GeV, electrons on lead Elastic Scattering Parity Violating Asymmetry Spokespersons Paul Souder Krishna.
Patricia Aguar Bartolomé Institut für Kernphysik, Universität Mainz PSTP 2013 Workshop, Charlottesville 11th September 2013.
Noise Analysis for PREx - Pb Radius Experiment Presented by: Luis Mercado UMass - Amherst 6/20/2008.
Strange Quarks in the Nucleon Sea Konrad A. Aniol, Fall 2010 Physics and Astronomy.
Parity Violation in Electron Scattering Emlyn Hughes SLAC DOE Review June 2, 2004 *SLAC E122 *SLAC E158 *FUTURE.
PN12 Workshop JLab, Nov 2004 R. Michaels Jefferson Lab Parity Violating Neutron Densities Z of Weak Interaction : Clean Probe Couples Mainly to Neutrons.
PREX PAVI06 May 2006 R. Michaels Jefferson Lab Lead ( Pb) Radius Experiment : PREX Z of Weak Interaction : Clean Probe Couples Mainly to Neutrons ( T.W.
LEDA / Lepton Scattering on Hadrons Hypernuclear Spectroscopy: 12 C and 16 O, 9 Be(preliminary) high quality data available. First publication soon. Extension.
T.C. Jude D.I. Glazier, D.P. Watts The University of Edinburgh Strangeness Photoproduction: Polarisation Transfer & Cross-Section Measurements.
T.C. Jude D.I. Glazier, D.P. Watts The University of Edinburgh Strangeness Photoproduction At Threshold Energies.
Collimator June 1-19, 2015HUGS The collimator is placed about 85 cm from the target and intercepts scattered electrons from 0.78° to 3.8° Water cooled.
UK Hadron Physics D. G. Ireland 10 October 2014 NuPECC Meeting, Edinburgh.
Crystal Ball Collaboration Meeting, Mainz, October 2007 Claire Tarbert, Univeristy of Edinburgh Coherent  0 Photoproduction on Nuclei Claire Tarbert,
Neutral pion photoproduction and neutron radii Dan Watts, Claire Tarbert University of Edinburgh Crystal Ball and A2 collaboration at MAMI Eurotag Meeting.
Pb Electroweak Asymmetry in Elastic Electron-Nucleus Scattering -- Weak charge form factor -- most weak charge is carried by neutrons PREX and.
Presentation by T. Gogami 2015/6/15 (Mon). Equation state of neutron matter.
1/33CREX Workshop Jefferson Lab March 16-19, 2013 NASA/CXC/SAO.
Richard Wilson Harvard University Pert of the HAPPEX Collaboration Summary of more detailed seminars at JLab by K. Paschke and APS by Paul Souder Parity-Violating.
Elastic Neutrino-Nucleon Scattering Argonne, July 2002 C. J. Horowitz.
Pb Electroweak Asymmetry in Elastic Electron-Nucleus Scattering : A measure of the neutron distribution PREX and CREX 48 Ca Neutron Skin Horowitz.
May 17, 2006Sebastian Baunack, PAVI06 The Parity Violation A4 Experiment at forward and backward angles Strange Form Factors The Mainz A4 Experiment Result.
Electromagnetic probes MAMI, Jefferson Lab & MAX-Lab Daniel Watts University of Edinburgh.
Measuring the Spin Structure of 3 He and the Neutron at Low Q 2 Timothy Holmstrom College of William and Mary For the Jefferson Lab Hall A Collaboration.
April 23, 2006PV in Electron Scattering on H and He P. A. Souder Parity-Violating Electron Scattering on Hydrogen and Helium … and Strangeness in the Nucleon.
Coulomb distortions in the Lead Radius Experiment (PREX) Tim Cooper (Univ. College Fraser Valley) C. J. Horowitz (Indiana)
(F.Cusanno, M.Iodice et al,Phys. Rev. Lett (2009). 670 keV FWHM  M. Iodice,F.Cusanno et al. Phys.Rev.Lett. 99, (2007) 12 C ( e,e’K )
Moller Polarimeter Q-weak: First direct measurement of the weak charge of the proton Nuruzzaman (
 0 life time analysis updates, preliminary results from Primex experiment 08/13/2007 I.Larin, Hall-B meeting.
Crystal Ball Collaboration Meeting, Basel, October 2006 Claire Tarbert, Univeristy of Edinburgh Coherent  0 Photoproduction on Nuclei Claire Tarbert,
R. Michaels PREX at PAVI 09 Lead ( Pb) Radius Experiment : PREX Pb E = 1 GeV, electrons on lead Elastic Scattering Parity Violating Asymmetry Spokespersons.
Symmetry energy in the neutron star equation of state and astrophysical observations David E. Álvarez C. Sept 2013 S. Kubis, D. Blaschke and T. Klaehn.
DIS-Parity: Measuring sin 2 θ W with Parity Violation in Deep Inelastic Scattering using Baseline Spectrometers at JLab 12 GeV Paul E. Reimer.
Recent Results in Parity-Violating Electron Scattering at Jefferson Lab: PREX and HAPPEX-III Kent Paschke APS Spring Meeting Anaheim, CA May 1, 2011 HAPPEX.
Parity Experiments and JLab Injector Riad Suleiman February 5, 2016.
Hall A Collab. Mtg, 6/ 2010R. Michaels, JLAB Lead ( 208 Pb) Radius Experiment : PREX E = 1 GeV, Elastic Scattering Parity-Violating Asymmetry PREX : precise.
Pb-Parity and Septum Update Presented by: Luis Mercado UMass - Amherst 12/05/2008 Thanks to Robert Michaels, Kent Pachke, Krishna Kumar, Dustin McNulty.
In the SM to the first order x: variable relevant to the nucleon internal structure Q 2 : Four-momentum transfer squared between the electron and the target.
Electric Dipole Response, Neutron Skin, and Symmetry Energy
Timelike Compton Scattering at JLab
Esperimenti sulla violazione di parita' presso i laboratori JLAB:
Radiative Corrections to PREX and QWEAK
Sanghwa Park (Stony Brook) for the PREX/CREX Collaboration
Weak probe of the nucleon in electron scattering
Thomas Jefferson National Accelerator Facility
Parity Violation Experiments at JLEIC
Noise Analysis for PREx - Pb Radius Experiment
Accelerator Issues Raised in Hall A Parity Collaboration Meeting, April B-Team Meeting April 29, 2009.
LEDA / Lepton Scattering on Hadrons
Lead ( Pb) Radius Experiment : PREX
LEDA / Lepton Scattering on Hadrons
Physics Interpretation of PREX
Wei Luo Lanzhou University 2011 Hall C User Meeting January 14, 2011
Recent results from BLAST detector
Parity – Violating Neutron Density Measurements : PREX, C-REX
Measurement of Parity-Violation in the N→△ Transition During Qweak
Presentation transcript:

Lead ( Pb) Radius Experiment : PREX 208 E = 850 MeV, electrons on lead Elastic Scattering Parity Violating Asymmetry Z of Weak Interaction : Clean Probe Couples Mainly to Neutrons ( T.W. Donnelly, J. Dubach, I Sick ) In PWIA (to illustrate) : 208Pb w/ Coulomb distortions (C. J. Horowitz) : PREX UVa Seminar, Nov 2005 R. Michaels Jefferson Lab

Parity Transformation A piece of the weak interaction violates parity (mirror symmetry) which allows to isolate it. Incident electron S (spin) Target Positive longitudinal spin P (momentum) Parity Transformation 208 Pb Negative longitudinal spin PREX UVa Seminar, Nov 2005 R. Michaels Jefferson Lab

Parity Violating Asymmetry 2 + Applications of PV : Nucleon Structure (strangeness) -- HAPPEX / G0 Standard Model Tests ( ) -- e.g. Qweak Nuclear Structure (neutron density) : PREX PREX UVa Seminar, Nov 2005 R. Michaels Jefferson Lab

Physics Impact PREX Mean Field & Other Atomic Parity Violation Models Measured Asymmetry PREX Physics Impact Correct for Coulomb Distortions Weak Density at one Q 2 Mean Field Small Corrections for n s & Other Atomic Parity Violation G G MEC E E Models 2 Neutron Density at one Q Assume Surface Thickness Good to 25% (MFT) Neutron Stars R n PREX UVa Seminar, Nov 2005 R. Michaels Jefferson Lab

PREX in Hall A at JLab Spectometers Lead Foil Target Hall A CEBAF Pol. Source Spectometers Lead Foil Target PREX UVa Seminar, Nov 2005 R. Michaels Jefferson Lab

Impact on Nuclear Physics: What is the size of a nucleus ? Is the size of a heavy nucleus determined by neutrons or by protons ? PREX UVa Seminar, Nov 2005 R. Michaels Jefferson Lab

Reminder: Electromagnetic Scattering determines (charge distribution) 208 Pb PREX UVa Seminar, Nov 2005 R. Michaels Jefferson Lab

Z of weak interaction : sees the neutrons Z of weak interaction : sees the neutrons Analysis is clean, like electromagnetic scattering: 1. Probes the entire nuclear volume 2. Perturbation theory applies proton neutron Electric charge 1 Weak charge 0.08 PREX UVa Seminar, Nov 2005 R. Michaels Jefferson Lab

Parity Violating Asymmetry Electron - Nucleus Potential electromagnetic axial is small, best observed by parity violation neutron weak charge >> proton weak charge Proton form factor Neutron form factor Parity Violating Asymmetry PREX UVa Seminar, Nov 2005 R. Michaels Jefferson Lab

Neutron Densities Proton-Nucleus Elastic Pion, alpha, d Scattering Pion Photoproduction Magnetic scattering Theory Predictions Involve strong probes Most spins couple to zero. Fit mostly by data other than neutron densities Therefore, PREX is a powerful check of nuclear theory. PREX UVa Seminar, Nov 2005 R. Michaels Jefferson Lab

!! Example : Recent Pion Photoproduction This paper obtains B. Krusche arXiv:nucl-ex/0509003 Sept 2005 This paper obtains !! Proton – Nucleus Elastic: Mean Field Theory PREX accuracy PREX UVa Seminar, Nov 2005 R. Michaels Jefferson Lab

PREX: Measurement at one Q is sufficient to measure R 2 Measurement at one Q is sufficient to measure R N ( R.J. Furnstahl ) Why only one parameter ? (next slide…) PREX error bar PREX UVa Seminar, Nov 2005 R. Michaels Jefferson Lab

Pb PREX: pins down the symmetry energy (1 parameter) PREX error bar energy cost for unequal # protons & neutrons ( R.J. Furnstahl ) PREX error bar 208 Pb PREX PREX UVa Seminar, Nov 2005 R. Michaels Jefferson Lab

Impact on Atomic Parity Measures atomic overlap with weak charge. Neutrons carry most weak charge PREX UVa Seminar, Nov 2005 R. Michaels Jefferson Lab

APV Atomic Parity Violation Low Q test of Standard Model Needs R to make further progress. 2 Isotope Chain Experiments e.g. Berkeley Yb N APV PREX UVa Seminar, Nov 2005 R. Michaels Jefferson Lab

Impact on Neutron Stars What is the nature of extremely dense matter ? Do collapsed stars form “exotic” phases of matter ? PREX UVa Seminar, Nov 2005 R. Michaels Jefferson Lab

Inputs: Eq. of state (EOS) PREX constraint Hydrostatics (Gen. Rel.) pressure density Inputs: Eq. of state (EOS) PREX constraint Hydrostatics (Gen. Rel.) Typ. Astro. Observations Luminosity L Temp. T Mass M from pulsar timing (with corrections … ) Mass - Radius relationship Fig. from J.M. Lattimer & M. Prakash, Science 304 (2004) 536. PREX UVa Seminar, Nov 2005 R. Michaels Jefferson Lab

PREX & Neutron Stars Crab Pulsar ( C.J. Horowitz, J. Piekarweicz ) R calibrates EOS of Neutron Rich Matter N Crust Thickness Explain Glitches in Pulsar Frequency ? Combine PREX R with Obs. Neutron Star Radii N Phase Transition to “Exotic” Core ? Strange star ? Quark Star ? Some Neutron Stars seem too Cold Cooling by neutrino emission (URCA) Crab Pulsar 0.2 fm URCA probable, else not PREX UVa Seminar, Nov 2005 R. Michaels Jefferson Lab

Liquid/Solid Transition Density FP TM1 Solid Liquid Neutron Star Crust vs Pb Neutron Skin Neutron Star 208Pb PREX calibrates the EOS at subnuclear densities. Thicker neutron skin in Pb means energy rises rapidly with density  Quickly favors uniform phase. Thick skin in Pb  low transition density in star. PREX UVa Seminar, Nov 2005 R. Michaels Jefferson Lab

Pb Radius vs Neutron Star Radius The 208Pb radius constrains the pressure of neutron matter at subnuclear densities. The NS radius depends on the pressure at nuclear density and above. Most interested in density dependence of equation of state (EOS) from a possible phase transition. Important to have both low density and high density measurements to constrain density dependence of EOS. If Pb radius is relatively large: EOS at low density is stiff with high P. If NS radius is small than high density EOS soft. This softening of EOS with density could strongly suggest a transition to an exotic high density phase such as quark matter, strange matter, color superconductor, kaon condensate… PREX UVa Seminar, Nov 2005 R. Michaels Jefferson Lab

PREX Constrains Rapid Direct URCA Cooling of Neutron Stars Proton fraction Yp for matter in beta equilibrium depends on symmetry energy S(n). Rn in Pb determines density dependence of S(n). The larger Rn in Pb the lower the threshold mass for direct URCA cooling. If Rn-Rp<0.2 fm all EOS models do not have direct URCA in 1.4 M¯ stars. If Rn-Rp>0.25 fm all models do have URCA in 1.4 M¯ stars. Rn-Rp in 208Pb If Yp > red line NS cools quickly via direct URCA reaction n p+e+ PREX UVa Seminar, Nov 2005 R. Michaels Jefferson Lab

PREX: Experiment Design Spokespersons: P.A. Souder, G.M. Urciuoli, R. Michaels Hall A Collaboration Experiment PREX UVa Seminar, Nov 2005 R. Michaels Jefferson Lab

Hall A at Jefferson Lab Polarized e- Source Hall A R. Michaels PREX UVa Seminar, Nov 2005 R. Michaels Jefferson Lab

Hall A Compton Moller Polarimeters Target Spectro: SQQDQ Cherenkov cones PMT Compton Moller Polarimeters Target Spectro: SQQDQ PREX UVa Seminar, Nov 2005 R. Michaels Jefferson Lab

High Resolution Spectrometers Spectrometer Concept: Resolve Elastic Elastic detector Inelastic Quad target Dipole Q Q PREX UVa Seminar, Nov 2005 R. Michaels Jefferson Lab

Optimum Kinematics for Lead Parity: E = 850 MeV, <A> = 0.5 ppm. Accuracy in Asy 3% Fig. of merit Min. error in R maximize: n 1 month run 1% in R n PREX UVa Seminar, Nov 2005 R. Michaels Jefferson Lab

Corrections to the Asymmetry are Mostly Negligible Horowitz, et.al. PRC 63 025501 Coulomb Distortions ~20% = the biggest correction. Strangeness Electric Form Factor of Neutron Parity Admixtures Dispersion Corrections Meson Exchange Currents Shape Dependence Isospin Corrections Radiative Corrections Excited States Target Impurities PREX UVa Seminar, Nov 2005 R. Michaels Jefferson Lab

Septum Magnets (INFN) Superconducting magnets Commissioned 2003-4 Electrons scattered at 6 deg sent to the HRS at 12.5 deg. PREX UVa Seminar, Nov 2005 R. Michaels Jefferson Lab

Integrating Detection Integrate in 30 msec helicity period. Deadtime free. 18 bit ADC with < 10 nonlinearity. But must separate backgrounds & inelastics ( HRS). - 4 Integrator Calorimeter (for lead, fits in palm of hand) ADC PMT electrons PREX UVa Seminar, Nov 2005 R. Michaels Jefferson Lab

Lead Target Pb C 208 12 Diamond Backing: High Thermal Conductivity Liquid Helium Coolant 12 beam C Diamond Backing: High Thermal Conductivity Negligible Systematics Beam, rastered 4 x 4 mm PREX UVa Seminar, Nov 2005 R. Michaels Jefferson Lab

Polarized Electron Source Laser GaAs Crystal Gun Pockel Cell flips helicity Halfwave plate (retractable, reverses helicity) - e beam Rapid, random helicity reversal Electrical isolation from rest of lab Feedback on Intensity Asymmetry PREX UVa Seminar, Nov 2005 R. Michaels Jefferson Lab

P I T A Effect at Polarized Source Polarization Induced Transport Asymmetry (G. D. Cates) Intensity Asymmetry Laser at Pol. Source where Transport Asymmetry drifts, but slope is ~stable. Feedback on PREX UVa Seminar, Nov 2005 R. Michaels Jefferson Lab

Araw = Adet - AQ + E+ ixi Beam Asymmetries Araw = Adet - AQ + E+ ixi natural beam jitter (regression) beam modulation (dithering) Slopes from PREX UVa Seminar, Nov 2005 R. Michaels Jefferson Lab

Helicity Correlated Differences: Position, Angle, Energy BPM X1 Scale +/- 10 nm slug Position Diffs avg ~ 1 nm Redundant Monitors Stripline Monitors Resonant Cavities Negligible Systematic Error BPM X2 slug BPM Y1 slug BPM Y2 slug “Energy” BPM “slug” = ~1 day running PREX UVa Seminar, Nov 2005 R. Michaels Jefferson Lab

Polarimetry Pe=86% ! Møller : dPe/Pe ~ 3 % (limit: foil polarization) PREX: 1 % desirable 2 % required Møller : dPe/Pe ~ 3 % (limit: foil polarization) Compton : 2% syst. at present Electron only Photon only Preliminary: 2.5% syst (g only) 2 analyses based on either electron or photon detection Superlattice: Pe=86% ! PREX UVa Seminar, Nov 2005 R. Michaels Jefferson Lab

Upgrade of Compton Polarimeter (Nanda, Lhuillier) electrons To reach 1% accuracy: Green Laser (increased sensitivity at low E) Integrating Method (removes some systematics of analyzing power) PREX UVa Seminar, Nov 2005 R. Michaels Jefferson Lab

Moller Polarimetry with Atomic Hydrogen Target ( E. Chudakov, V. Luppov, D. Crabb) H atoms Ultra Cold Traps Polarization ~ 100% Density Lifetime > 10 min Solenoid 8T Trap Polarimetry beam 1% stat. err. in 30 min at 30 A Low background High beam currents allowed (100 A) Goal: ~ 0.5 % systematic error PREX UVa Seminar, Nov 2005 R. Michaels Jefferson Lab

PREX : Summary Fundamental Nuclear Physics HAPPEX to demonstrate most technical aspects Polarimetry Upgrade needed PREX test run Nov 2005 (this weekend !) Experiment Runs in 2007 ? PREX UVa Seminar, Nov 2005 R. Michaels Jefferson Lab