Hypernuclei: A very quick introduction Electroproduction of hypernuclei The experimental Program at Jefferson Lab Update on the analysis of O and Be targets.

Slides:



Advertisements
Similar presentations
Hypernuclei, – N interaction Electroproduction of hypernuclei E experiment UPDATE Experimental equipment and setup Kaon identification RICH detector.
Advertisements

Hypernuclei: A quick introduction Electroproduction of hypernuclei E experiment UPDATE Experimental equipment and setup Analysis results of 2004.
BigBite K.Egiyan Probabilities of SRC in Nuclei Measured with A(e,e / ) Reactions K. Egiyan (Yerevan Physics Institute, Yerevan, Armenia and Jefferson.
J LAB Hall A Experiment E O(e,eK + ) 16 N 12 C(e,eK + ) C(e,eK + ) 12 Be(e,eK + ) 9 Li Be(e,eK + ) 9 Li H(e,eK + ) 0 E beam = 4.016, 3.777,
Recent Spectroscopic Investigation of P-Shell Λ - hypernuclei by the (e, eK+) Reaction - Analysis Status of E Chunhua Chen Hampton University July.
PR A Study with High Precision on the Electro-production of the Lambda and Lambda Hypernuclei in the Full Mass Range S.N.Nakamura Tohoku University.
Patrick Achenbach U Mainz May 2o14. Fundamental symmetries in light hypernuclei.
1. The Physics Case 2. Present Status 3. Hypersystems in pp Interactions 4. The Experiment Future Experiments on Hypernuclei and Hyperatoms _.
The Next Generation of Hypernucleus and Hyperatom Experiments GSI, Josef Pochodzalla Univ. Mainz.
Measurement of the  n(p)  K +   (p) at Jefferson Lab Sergio Anefalos Pereira Laboratori Nazionali di Frascati.
HYPERNUCLEAR PHYSICS USING CEBAF BEAM PAST AND FUTURE Liguang Tang Hampton University/JLAB 4 th Workshop on Hadron Physics In China and Opportunities with.
June 2004L. Benussi - DAFNE 2004 First results on hyper-nuclear spectroscopy from the FINUDA experiment at DANE Luigi Benussi INFN, Laboratori.
X. Dong 1 May 10, 2010 NSD Monday Morning Meeting First Observation of an Anti-Hypernucleus Xin Dong for the STAR Collaboration Science 328, 58 (2010)
Study of  -Hypernuclei with Electromagnetic Probes at JLAB Liguang Tang Department of Physics, Hampton University & Jefferson National Laboratory (JLAB)
Hypernuclear Physics - electroproduction of hypernuclei Petr Bydžovský in collaboration with Miloslav Sotona Nuclear Physics Institute, Řež near Prague,
Electroproduction of hypernuclei. E experiment: Experimental equipment and setup; Preliminary results of Be and O. Conclusions. S. Marrone – HYP.
1/12/2007DNP Town Meeting, Joerg Reinhold (FIU) Hypernuclear Spectroscopy Joerg Reinhold Florida International University for the Jefferson Lab Collaborations.
Elementary particles atom Hadrons Leptons Baryons Mesons Nucleons
S.N.Nakamura, Tohoku Univ. JLab HallC Meeting 22/Jan/2010, JLab.
The angular dependence of the 16 O(e,e’K + ) 16  N and H(e,e’K + )  F. Garibaldi – Jlab December WATERFALL The WATERFALL target: reactions on.
LEDA / Lepton Scattering on Hadrons Hypernuclear Spectroscopy: 12 C and 16 O, 9 Be(preliminary) high quality data available. First publication soon. Extension.
HYPERNUCLEAR PHYSICS - N interaction
Lambda hypernuclear spectroscopy at JLab Hall-C Graduate School of Science, Tohoku University Toshiyuki Gogami for the HES-HKS collaboration 1.Introduction.
Decade of Hypernuclear Physics at JLAB and Future Prospective in 12 GeV Era Liguang Tang Department of Physics, Hampton University & Jefferson National.
Hypernuclear spectroscopy in Hall A 12 C, 16 O, 9 Be, H E Experimental issues Perspectives (Hall A & Hall C collaboration) High-Resolution Hypernuclear.
Brad Sawatzky / JLAB Acknowledgements to Liguang Tang Hampton University/JLAB MESON 2012 Krakow, Poland.
Study of Light  -Hypernuclei by Spectroscopy of Two Body Weak Decay Pions Liguang Tang Department of Physics, Hampton University Jefferson National Laboratory.
1 Hypernuclear spectroscopy up to medium mass region through the (e,e’K + ) reaction in JLab Mizuki Sumihama For HKS collaboration Department of Physics.
A Study with High Precision on the Electro- production of  and  -hypernuclei in the Full Mass Range Liguang Tang On behalf of the unified JLab hypernuclear.
Hypernuclear Production with Hadronic and Electromagnetic Probes Radhey Shyam Saha Institute of Nuclear Physics, Kolkata, India Z.Zt. Institut f. Theo.
HYPERNUCLEAR PHYSICS Hypernuclei are bound states of nucleons with a strange baryon (  hyperon). Extension of physics on N-N interaction to system with.
Hypernuclear spectroscopy using (K - stop,  0 ) and (e,e’K + ) reactions Doc. dr. sc. Darko Androić University of Zagreb Physics Department.
HYPERNUCLEAR PHYSICS Hypernuclei are bound states of nucleons with a strange baryon (  hyperon). Extension of physics on N-N interaction to system with.
JLab Hypernuclear Workshop 27 th May 2014 Satoshi N Nakamura, Tohoku University HKS HES Results from Hall-C.
Spectroscopy of  -Hypernuclei by Electroproduction HNSS/HKS Experiments at JLAB L. Tang Hampton University & JLAB FB18, Brazil, August 21-26, 2006.
Liguang Tang Department of Physics, Hampton University & Jefferson National Laboratory (JLAB) July 31 & Aug. 1, 2009, OCPA6 Satellite Meeting on Hadron.
Osamu Hashimoto Department of Physics Tohoku University APCTP Workshop on Strangeness Nuclear Physics (SNP'99) February 19-22, 1999 Reaction spectroscopy.
Cross section of elementally process [5] The  -ray spectroscopy of light hypernuclei at J-PARC (E13) K. Shirotori for the Hyperball-J collaboration Department.
The SKS Spectrometer and Spectroscopy of Light  Hypernuclei (E336 and E369) KEK PS Review December 4-5, 2000 Osamu Hashimoto Tohoku University.
Recent Studies of Hypernuclei Formation with Electron Beams at MAMI Patrick Achenbach U Mainz Sept. 2o13.
Hypernuclei Production Experiment E05115 at Jefferson Laboratory by the (e,e’K + ) Reaction Chunhua Chen March 31, 2012  Introduction  Experimental Setup.
 Electroproduction of hypernuclei. E experiment.  Experimental equipment and setup Kaon identification  RICH detector: 2004 vs 2005 Analysis results.
Magnetic Moment of a  in a Nucleus H. Tamura Tohoku University 1. Introduction 2.  -ray spectroscopy of  hypernuclei and spin-flip B(M1) 3. Experiments.
1 Experimental particle physics introduction. 2 What holds the world together?
The 12 GeV Physics Program at Jefferson Lab R. D. McKeown Jefferson Lab College of William and Mary PTSP 2013 – Charlottesville, VA September 9, 2013.
Hypernuclei,  – N interaction  Electroproduction of hypernuclei E experiment UPDATE  Experimental equipment and setup Kaon identification  RICH.
(F.Cusanno, M.Iodice et al,Phys. Rev. Lett (2009). 670 keV FWHM  M. Iodice,F.Cusanno et al. Phys.Rev.Lett. 99, (2007) 12 C ( e,e’K )
Neutrino-Nucleus Reactions at Medium and Low Energies [contents] 1. Neutrino and weak interaction 2. Cross section for ν-A and e-A reactions 3. EMC effect.
Master thesis 2006 Shirotori1 Hypernuclear gamma-ray spectroscopy at J-PARC K1.8 beam line 東北大学大学院理学研究科 原子核物理 白鳥昂太郎.
Electrophoto-production of strangeness and  Hypernuclei Osamu Hashimoto Department of Physics, Tohoku University October 21-22, 2004 Jeju University.
Study of Light  -Hypernuclei by Spectroscopy of Two Body Weak Decay Pions Liguang Tang Department of Physics, Hampton University Jefferson National Laboratory.
Study of light hypernuclei by the (e,e’K + ) reaction Graduate school of science, Tohoku Univ. Toshiyuki Gogami JLab E collaboration, 2009, JLab.
Lambda hypernuclear spectroscopy up to medium heavy mass number at JLab Hall-C Graduate School of Science, Tohoku University Toshiyuki Gogami for the HES-HKS.
Structure of light Λ hypernuclei Emiko Hiyama (RIKEN)
Hypernuclear gamma-ray spectroscopy at J-PARC K1.8 Beam line Tohoku Univ. K.Shirotori 東北大学 大学院理学研究科 白鳥昂太郎.
Spectrometer optics studies and target development for the 208Pb(e,e’p) experiment in Hall A at Jefferson Lab, GUIDO M. URCIUOLI, INFN, Roma, Italy, JUAN.
Search for neutron-rich hypernuclei in FINUDA: preliminary results presented by M. Palomba 1 for the FINUDA Collaboration 1 INFN and Dipartimento di Fisica,
Hypernuclear investigation Few-body aspects and YN, YY interaction –Short range characteritics ofBB interaction –Short range nature of the LN interaction,
Simulation of Heavy Hypernuclear Lifetime Measurement For E Zhihong Ye Hampton University HKS/HES, Hall C Outline: 1,Physics 2,Detectors 3,Events.
Study of  -Hypernuclei with Electromagnetic Probes at JLAB Liguang Tang Department of Physics, Hampton University & Jefferson National Laboratory (JLAB)
Hypernuclear Spectroscopy with Electron Beams
Florida International University, Miami, FL
Samples of Hall B Results with Strong Italian Impact
The First
LEDA / Lepton Scattering on Hadrons
LEDA / Lepton Scattering on Hadrons
Hypernuclear spectroscopy using (K-stop,p0) and (e,e’K+) reactions
Structure of 10Be and 10B hypernuclei studied with four-body cluster model Λ Λ E. Hiyama (RIKEN) Submitted in PRC last August and waiting for referee’s.
Spectroscopy of -Hypernuclei by Electroproduction HNSS/HKS Experiments at JLAB L. Tang Hampton University & JLAB SNP2006, Zhangjiajie, Sept.
u c s b d n Hadron & Nuclear Physics Particle Physics Quarks Leptons
Presentation transcript:

Hypernuclei: A very quick introduction Electroproduction of hypernuclei The experimental Program at Jefferson Lab Update on the analysis of O and Be targets Update on the analysis of Elementary Production Hall A Collaboration Meeting Jefferson Lab, December 2007 Francesco Cusanno INFN Rome (Italy) Armando Acha FIU (Miami FL)

H YPERNUCLEI …what they are H ypernuclei are bound states of nucleons with a strange baryon (Lambda hyperon). A hypernucleus is a laboratory to study nucleon-hyperon interaction ( -N interaction). Extension of physics on N-N interaction to system with S0 Internal nuclear shell are not Pauli-blocked for hyperons.

: hypernuclear identification with visualizing techniques emulsions, bubble chambers 1970 Now : Spectrometers at accelerators: CERN (up to 1980) BNL : (K -, - ) and (K +, + ) production methods KEK : (K -, - ) and (K +, + ) production methods > 2000 : Stopped kaons at DA NE (FINUDA) : (K - stop, - ) > 2000 : The new electromagnetic way : HYPERNUCLEAR production with ELECTRON BEAM at JLAB Elementary reaction on neutron : e.g. Elementary reaction on proton : e.g. H ypernuclei - historical background - experimental techniques Production of MIRROR hypernuclei : I=0, q=0 n = p Spectroscopy of mirror hypernuclei reveal n p 0 mixing and N-N coupling

What do we learn from hypernuclear spectroscopy H ypernuclei and the -N interaction weak coupling model (parent nucleus) ( hyperon) (doublet state) S SNSN T (A-1) A SNSN, S, T Split by N spin dependent interaction Hypernuclear Fine Structure Low-lying levels of Hypernuclei Each of the 5 radial integral (V,, S, S N, T) can be phenomenologically determined from the low lying level structure of p-shell hypernuclei V

E LECTROproduction of H ypernuclei Hypernuclear physics accesses information on the nature of the force between nucleons and strange baryons, i.e. the -N interaction. The nucleus provides a unique laboratory for studying such interaction. The characteristics of the Jefferson Lab. electron beam, together with those of the experimental equipments, offer a unique opportunity to study hypernuclear spectroscopy via electromagnetic induced reactions. A new experimental approach: alternative to the hadronic induced reactions studied so far. The experimental program at Jefferson Lab, in Hall A and in Hall C, has completed its first part of measurements, performing high-resolution hypernuclear spectroscopy on light (p-shell) and medium heavy targets Different approach: Hall C : Low Luminosity (thin targets low current) Large Acceptance Hall A : Small Acceptance - High Luminosity

J LAB Hall A Experiment E O(e,eK + ) 16 N 12 C(e,eK + ) C(e,eK + ) 12 Be(e,eK + ) 9 Li Be(e,eK + ) 9 Li H(e,eK + ) 0 E beam = 4.016, 3.777, GeV P e = 1.80, 1.57, 1.44 GeV/c P k = 1.96 GeV/c e = K = 6° W 2.2 GeV Q 2 ~ 0.07 (GeV/c) 2 Beam current : <100 A Target thickness : ~100 mg/cm 2 Counting Rates ~ 0.1 – 10 counts/peak/hour A.Acha, H.Breuer, C.C.Chang, E.Cisbani, F.Cusanno, C.J.DeJager, R. De Leo, R.Feuerbach, S.Frullani, F.Garibaldi*, D.Higinbotham, M.Iodice, L.Lagamba, J.LeRose, P.Markowitz, S.Marrone, R.Michaels, Y.Qiang, B.Reitz, G.M.Urciuoli, B.Wojtsekhowski, and the Hall A Collaboration E C OLLABORATION

R esults on 12 C target Analysis of the reaction 12 C(e,eK) 12 B Results published: M.Iodice et al., Phys. Rev. Lett. E052501, 99 (2007).

R esults on 12 C target – Hypernuclear Spectrum of 12 B G.S. width is 1150 keV; an unresolved doublet? What would separation be between two 670 keV peaks? ~650 keV (theory predicts only 140) Narrowest peak is doublet at MeV experiment resolution < 700 keV 670 keV FWHM

R esults from the 9 Be target Analysis of the reaction 9 Be(e,eK) 9 Li (very preliminary) Counts / 200 keV Missing energy (MeV) Counts / 200 keV Red line: Benhold-Mart (K MAID) Blue line: Saghai Saclay-Lyon (SLA) Curves are normalized on g.s. peak. Black line: Millener wave function

R esults from the 9 Be target Analysis of the reaction 9 Be(e,eK) 9 Li (very preliminary) Missing energy (MeV) Counts

Preliminary R esults on the WATERFALL target Analysis of the reaction 16 O(e,eK) 16 N and 1 H(e,eK) (elementary reaction)

Be windows H 2 O foil WATERFALL the WATERFALL target: provides 16 O and H targets

1 H (e,eK) 16 O(e,eK) 16 N 1 H (e,eK) Energy Calibration Run Preliminary R esults on the WATERFALL target - 16 O and H spectra Excitation Energy (MeV) Nb/sr2 GeV MeV Water thickness from elastic cross section on H Fine determination of the particle momenta and beam energy using the Lambda peak reconstruction (resolution vs position)

Fit to the data: Fit 4 regions with 4 Voigt functions 2 /ndf = 1.19 Theoretical model superimposed curve based on : i)SLA p(e,eK+) (elementary process) ii) N interaction fixed parameters from KEK and BNL 16 O spectra R esults on 16 O target – Hypernuclear Spectrum of 16 N - Peak Search : Identified 4 regions with excess counts above background Binding Energy B =13.66±0.25 MeV Measured for the first time with this level of accuracy (ambiguous interpretation from emulsion data; interaction involving production on n more difficult to normalize)

R esults on 16 O target – Hypernuclear Spectrum of 16 N E ( +,K + ) (K -, - ) [2] O. Hashimoto, H. Tamura, Part Nucl Phys 57, 564 (2006) [3] private communication from D. H. Davis, D. N. Dovee, fit of data from Phys Lett B 79, 157 (1978) [4] private communication from H. Tamura, erratum on Prog Theor Phys Suppl 117, 1 (1994) [2] [3] [4] Comparison with the mirror nucleus 16 O Difference expected: 400 – 500 keV

p(e,e'K + ) on Waterfall Production run p(e,e'K + ) on LH2 Cryo Target Calibration run Work on normalizations, acceptances, efficiencies still underway Expected data from the Proposal E to study the angular dependence of p(e,eK) and 16 O(e,eK) 16 N at Low Q 2 approved January, 2007 R esults on H target – The p(e,eK) C ross S ection