A future n-DVCS experiment in Hall A Malek MAZOUZ October 15 th 2007 What was done in E03-106 Motivations Experimental upgrades Projected Results DVCS.

Slides:



Advertisements
Similar presentations
P-Y BERTIN Jefferson Laboratory and Université BLAISE PASCAL- IN2P3/CNRS for the DVCS HALL A collaboration 0 exclusive electro production Q 2 =2.3 GeV.
Advertisements

Deeply Virtual Compton Scattering on the neutron in. Dr. Malek MAZOUZ Ph.D. Defense, Grenoble 8 December 2006 GPDs Physics case n-DVCS experimental setup.
Deeply Virtual Compton Scattering on the neutron Slides by Malek MAZOUZ June 21 st 2007 Physics case n-DVCS experimental setup Analysis method Results.
L/T separation in the 3 He(e,ep) reaction Javier R. Vignote and Eric Voutier Laboratoire de Physique Subatomique et de Cosmologie, Grenoble, France Jlab.
Deeply Virtual Compton Scattering from the Proton and the Neutron ( E & E03-106: DVCS/nDVCS ) Hall A Collaboration MeetingDecember 6, 2005 Spokespersons:
P-DVCS and n-DVCS experiment status -Brief overview of the theory -Experiment setup -Analysis status Malek MAZOUZ LPSC Grenoble Hall A Collaboration MeetingJune.
December Extraction of exclusive neutral pions electro-production cross sections in Hall Jefferson Laboratory. Eric FUCHEY Ph.D
Deeply Virtual Compton JLab Franck Sabatié CEA Saclay On behalf of the Hall A and Hall B collaborations Pacific Spin 07 - Vancouver August.
Polarized positive + and negative - polarized positive + and negative - muon to perform DVCS measurements for GPD study for GPD study Nicole dHose,
Deeply Virtual Compton Scattering on the neutron with CLAS12 at 11 GeV k k’ q’ GPDs nn’ Silvia Niccolai CLAS12 Workshop, Paris, March 8th 2011.
NDVCS measurement with BoNuS RTPC M. Osipenko December 2, 2009, CLAS12 Central Detector Collaboration meeting.
DVCS at JLab Como, 11/06/2013. JLab published 6 GeV results JLab 6GeV analysis in progress JLab 12 GeV program.
Experimental Status of Deuteron F L Structure Function and Extractions of the Deuteron and Non-Singlet Moments Ibrahim H. Albayrak Hampton University.
Brahim MorenoStudents' seminar at Bosen Workshop ΔVCS and Generalized Parton Distributions
Experimental requirements for GPD measurements at JLab energies. Detector that ensures exclusivity of process, measurement of complete final state Measure.
Roberto Francisco Pérez Benito On behalf the HERMES Collaboration European Graduate School Lecture Week on Hadron Physics Jyväskylä, Aug 25-29, 2008 HERMES.
Why Studying n-DVCS ? Eric Voutier n-DVCS gives access to the least known and constrained GPD, E 0 because F 1 (t) is small 0 because of cancelation of.
Study of two pion channel from photoproduction on the deuteron Lewis Graham Proposal Phys 745 Class May 6, 2009.
2-3D imaging of the nucleon: Generalized Parton Distributions Franck Sabatié Nov. 25th 2008 CEA Saclay - SPhN Why Generalized Parton Distributions ? Properties,
THE DEEP INELASTIC SCATTERING ON THE POLARIZED NUCLEONS AT EIC E.S.Timoshin, S.I.Timoshin.
Measurements of F 2 and R=σ L /σ T on Deuteron and Nuclei in the Nucleon Resonance Region Ya Li January 31, 2009 Jlab E02-109/E (Jan05)
J. Roche Ohio University and Jefferson Laboratory Results shown are from the ”DVCS HALL A collaboration” (E and E03-106) First steps toward nucleon.
Generalized Parton Distribution JLab Franck Sabatié CEA Saclay On behalf of the Hall A and Hall B collaborations APS-DNP mini workshop Newport.
Crossed Channel Compton Scattering Michael Düren and George Serbanut, II. Phys. Institut, - some remarks on cross sections and background processes  
Deeply Virtual Exclusive Reactions with CLAS Valery Kubarovsky Jefferson Lab ICHEP July 22, 2010, Paris, France.
Possibilities to perform DVCS measurement at COMPASS E. Burtin CEA-Saclay Irfu/SPhN On Behalf of the COMPASS Collaboration DIS Madrid - 29 April,
Possibility for Double DVCS measurement in Hall A Alexandre Camsonne SBS Meeting June 4 th 2013.
Motivation. Why study ground state hyperon electroproduction? CLAS detector and analysis. Analysis results. Current status and future work. M. Gabrielyan.
Measurement of F 2 and R=σ L /σ T in Nuclei at Low Q 2 Phase I Ya Li Hampton University January 18, 2008.
DVCS with Positron Beams at the JLab 12 GeV Upgrade
Lead Fluoride Calorimeter for Deeply Virtual Compton Scattering in Hall A Alexandre Camsonne Hall A Jefferson Laboratory October 31 st 2008.
Deeply Virtual Compton Scattering on the neutron Malek MAZOUZ LPSC Grenoble EINN 2005September 23 rd 2005.
Deeply Virtual Compton Scattering in JLAB Hall A
Measuring the charged pion polarizability in the  →    −  reaction David Lawrence, JLab Rory Miskimen, UMass, Amherst Elton Smith, JLab.
Λ and Σ photoproduction on the neutron Pawel Nadel-Turonski The George Washington University for the CLAS Collaboration.
A Measurement of Two-Photon Exchange in Unpolarized Elastic Electron-Proton Scattering John Arrington and James Johnson Northwestern University & Argonne.
Measurements with Polarized Hadrons T.-A. Shibata Tokyo Institute of Technology Aug 15, 2003 Lepton-Photon 2003.
Calorimetry for Deeply Virtual Compton Scattering in Hall A Alexandre Camsonne Hall A Jefferson Laboratory Workshop on General Purpose High Resolution.
E & E status report Maxime DEFURNE CEA-Saclay/Irfu/SPhN 1.
Harut Avakian (Jlab) DVCS results with unpolarized and polarized target Introduction Event selection MC simulations and radiative corrections DVCS with.
Probing Generalized Parton Distributions
Deeply Virtual Compton JLab Franck Sabatié Saclay SPIN’06 - Kyoto October 6 th 2006 From GPDs to DVCS, to GPDs back Onto the DVCS harmonic.
 0 life time analysis updates, preliminary results from Primex experiment 08/13/2007 I.Larin, Hall-B meeting.
Ibrahim H. Albayrak, Hampton University Group Meeting Experiment Rosen07: Measurement of R =  L /  T on Deuterium in the Nucleon Resonance Region. 
JLab, October 31, 2008 WACS in 12 GeV era 1 GPDs Wide-Angle Compton Scattering pi-0 photo-production in 12 GeV era B. Wojtsekhowski Outline WACS and other.
Georgie Mbianda 1 for the Baryon (E01-002) Collaboration 1 University of the Witwatersrand, Johannesburg Exclusive Electroproduction of π + and η mesons.
Time-like Compton Scattering with CLAS12 S. Stepanyan (JLAB) CLAS12 European Workshop February 25-28, 2009, Genova, Italy.
JLab PAC33, January 16, 2008 Polarization transfer in WACS 1  p   p Polarization transfer in Wide-Angle Compton Scattering Proposal D. Hamilton,
Deeply virtual  0 electroproduction measured with CLAS.
Hall C Summer Workshop August 6, 2009 W. Luo Lanzhou University, China Analysis of GEp-III&2γ Inelastic Data --on behalf of the Jefferson Lab Hall C GEp-III.
Envisioned PbWO4 detector Wide-Angle Compton Scattering at JLab-12 GeV with a neutral-particle detector With much input from B. Wojtsekhowski and P. Kroll.
DVCS Radiative Corrections C. Hyde Old Dominion University, Norfolk, VA (and update to come) Hall A DVCS Collaboration.
Hall A Collaboration Meeting Slide 0 Measurements of Target Single-Spin Asymmetries in QE 3 He ↑ (e, e’) Update of QE A y (E05-015) experiment.
Timelike Compton Scattering at JLab
Deep Virtual Compton Scattering at Jlab Hall A
Exclusive electroproduction of the r+ on the proton at CLAS
Deeply Virtual Compton Scattering at HERMES
Wide Angle Compton Scattering
Measurement of GPDs at JLab and in Future at Colliders
Precision Measurement of η Radiative Decay Width via Primakoff Effect
Deeply Virtual Compton Scattering at 11GeV with CLAS12
Study of Strange Quark in the Nucleon with Neutrino Scattering
4th Workshop on Exclusive Reactions at High Momentum Transfer
Wei Luo Lanzhou University 2011 Hall C User Meeting January 14, 2011
Overview on hard exclusive production at HERMES
Exclusive production at HERMES
First results on Deep Virtual Compton Scattering in Hall A
Deeply Virtual Scattering
GEp-2γ experiment (E04-019) UPDATE
Presentation transcript:

A future n-DVCS experiment in Hall A Malek MAZOUZ October 15 th 2007 What was done in E Motivations Experimental upgrades Projected Results DVCS meeting Faculté des Sciences de Monastir – Tunisia

Deeply Virtual Compton Scattering The GPDs enter the DVCS amplitude as an integral over x : GPDs appear in the real part through a PP integral over x GPDs appear in the imaginary part at the line x=±ξ k k q GPDs pp factorization Simplest hard exclusive process involving GPDs Mueller, Radyushkin, Ji Collins, Freund, Strikman

What could be done at JLab Hall A The cross-section difference accesses the Imaginary part of DVCS and therefore GPDs at x=±ξ The total cross-section accesses the real part of DVCS and therefore an integral of GPDs over x Purely real and fully calculable Twist-3 term Kroll, Guichon, Diehl, Pire … Twist-2 term Bilinear combinations of GPDs

Expression of the cross-section difference Combination to be extracted from the data GPDs n-DVCS experiments provide different linear combinations of GPDs than p-DVCS experiments. n-DVCS experiments have different flavor sensitivity than p-DVCS experiments. A. V. Belitsky, D. Muller, A. Kirchner, Nucl. Phys. B629, 323 (2002).

E experimental apparatus and kinematics LH 2 / LD 2 target Polarized Electron Beam Scattered Electron Left HRS Electromagnetic Calorimeter DVCS events are identified with M X 2 Beam energy = 5.75 GeV Beam polarization = 75% Beam current = ~ 4 μA Luminosity = cm -2.s -1 nucleon -1

I.A. and DVCS on coherent deuteron Impulse approximation : With a Deuterium target one can have 3 different DVCS processes p n d n d d d d p-DVCSd-DVCSn-DVCS (incoherent) (coherent)(incoherent) Access deuteron GPDs overlap < 3% Final state interaction effects between a pn pair should be small probability

p-DVCS and n-DVCS accidentals MN2MN2 M N 2 +t/2 d-DVCS Analysis method Contamination by M x 2 cut = (M N +M π ) 2 N + mesons (Resonnant or not)

Extraction of observables MC sampling Luminosity with Under the M X 2 cut : A. V. Belitsky, D. Muller, A. Kirchner, Nucl. Phys. B629, 323 (2002). A. Kirchner, D. Muller, Eur. Phys. J. C32, 347 (2004). Fit of : by :

What was done : E results Deuteron moments compatible with zero at large |t| Neutron moments are small and compatible with zero Results can constrain GPD models (and therefore GPD E) - Large systematic error due to the uncertainty on the relative calibration between the LH2 and the LD2 data. - Large systematic error due to the uncertainty on the contamination of the DVCS-like π 0 channel. M. Mazouz et al., submitted to PRL. arXiv

n-DVCS is sensitive to Jd p-DVCS is sensitive to Ju Complementarity between neutron and proton measurements What was done : E results Model dependent extraction of J u and J d

What is interesting to do now k k q GPDs pp factorization Already determined in E Sensitive to x=± ±…

Expression of the unpolarized cross section GPDs In the nucleon case : A. V. Belitsky, D. Muller, A. Kirchner, Nucl. Phys. B629, 323 (2002).

What was NOT done in E and why Cannot be separated with a φ analysis Six twist-2 coefficients to be extracted from the data The large systematic error (>50%) of E did not allow a significant extraction of unpolarized cross sections. The DVCS 2 and the interference terms have a similar φ dependence and therefore cannot be separated.

We propose to perform a new n-DVCS experiment at the same kinematics than E (Q 2 =1.9 GeV 2 and x B =0.36) but with 2 different beam energies (4.82 GeV and 6 GeV) and with 5% systematic errors. Interference and DVCS 2 Separation The Γ factors depend on the beam energy while the GPD combinations do not. Different beam energies allow to separate the DVCS 2 and the interference terms C. Muňoz Camacho et al., E

Accessible observables Neutron GPDs integral Determine twice as accurately. Measure the polarized cross sections of exclusive π 0 electroproduction on the neutron and coherent deuteron. Linear combinations : Bilinear combinations : Deutron GPDs integral ? Linear combinations : Bilinear combinations :

Model Calculation for n-DVCS VGG model : Goeke et al., Prog. Part. Nucl. Phys 47 (2001), 401. M. Vanderhaeghen, P.A.M. Guichon, M. Guidal, Phys. Rev. D 60 (1999), GPD Ě contribution 30% In VGG model, the DVCS 2 contribution is larger than the interference one. DVCS 2 /BH 2 depends on the beam energy

Experimental upgrades We will use the experimental apparatus of the previous DVCS experiments with a few modifications and upgrades ( already planed for the approved p-DVCS experiment) 50% expanded calorimeter (13 x 16 blocks instead of 11 x 12 blocks) Improve the π 0 contamination subtraction at high -t No recoil detectors will be used Reduction of the experimental dead time Faster electronics to improve the data record and transfer New trigger logic (higher threshold + specific trigger for π 0 ) Detection of enough π 0 to subtract correctly the contamination and determine the π 0 electro-production polarized cross sections. Remove the systematic error due to the uncertainty on the contamination of DVCS-like π 0 channel.

Calorimeter Calibration Elastic calibration H(e,ep) : will be performed periodically. We have 2 independent methods to continuously check and correct the calorimeter calibration 1 st method : missing mass of D(e,eπ - )X reaction 2 nd method : Invariant mass of 2 detected photons in the calorimeter (π 0 ) Calorimeter blocks with radiation damage will be cured with blue light. Will help to keep a good resolution. Frequent swap of LH 2 and LD 2 target Remove the systematic error due to the uncertainty on the relative calibration between LH 2 et LD 2 data

Projected results TargetBeam energy (GeV) LH LH LD LD Total LD2 Luminosity (fb -1 ) fb fb -1

Projected results previous systematics new systematics The error bars are computed with the E experimental resolution

Requested kinematics and beam time TargetBeam energy (GeV) k (GeV/c) q (GeV) W 2 (GeV 2 ) Θ e (deg) -Θ γ* (deg) Requested beam time (hours) LH (approved) LH (approved) LD LD Total requested beam time Beam current = 4 μA

Summary The results of the DVCS experiments in Hall A prove that, with our experimental apparatus, we are able to measure the DVCS polarized cross sections and extract GPDs from these quantities. Unfortunately, this measurement was not very significant in E because of very large systematics… But we know how to remove these systematics in a future experiment. n-DVCS experiments appear as a mandatory step towards a better knowledge of the nucleon structure. The unpolarized n-DVCS cross section represents a valuable source of information about GPDs (GPDs integral) A future n-DVCS experiment will also provide interesting results about d-DVCS and π 0 electroproduction on the neutron and deuteron.

END Of the first part

Proposed kinematics and luminosity TargetBeam energy (GeV) LH LH LD LD Total LD2 Luminosity Same kinematics than E but with 2 beam energies (fb -1 )

Extraction of observables Same extraction procedure than the previous experiment one: Fit of the experimental distribution by a Monte Carlo simulation within a global analysis involving a binning on Additional binning on the beam energy

Analog Ring Sampler 1 GHz Analog Ring Sampler (ARS) x 128 samples x 289 detector channels Sample each PMT signal in 128 values (1 value/ns) Extract signal properties (charge, time) with a wave form Analysis. Allows to deal with pile-up events.

Analysis method Adjust the calibration and the resolution of H 2 and D 2 data relatively to each other. Systematic error due to the relative calibration between H 2 and D 2 data Add the Fermi motion to the target nucleon for H 2 data Nb of counts Invariant mass (GeV) Variation of calibration coefficients during the experiment due to radiation damage. Calibration variation (%) Calorimeter block number Solution : extrapolation of elastic coefficients assuming a linearity between the received radiation dose and the gain variation By selecting n(e,eπ-)p events, one can predict the energy deposit in the calorimeter using only the cluster position. a minimisation between the measured and the predicted energy gives a better calibration.

Analysis method Add the Fermi motion to the target nucleon for H 2 data Subtract the π° contamination

Analysis method Substract H 2 data from D 2 data The π° contamination is treated as a systematic error

Exclusivity and helicity signal

sin(φ) and sin(2φ) moments Results are coherent with the fit of a single sin(φ) contribution

n-DVCS results from E03-106

d-DVCS results from E Prediction from F. Cano and B. Pire. Eur. Phys. J. A19, 423 (2004) Experimental results + E03-106

E results

π 0 to subtract π 0 contamination subtraction M x 2 cut =(M p +M π ) 2 H 2 data Subtraction of 0 contamination (1 in the calorimeter) is obtained from a phase space simulation which weight is adjusted to the experimental 0 cross section (2 in the calorimeter).

Model Calculation for n-DVCS

Projected results

Model Calculation for d-DVCS Cano-Pire model : F. Cano and B. Pire, Eur. Phys. J. A 10 (2004), 423.

Model Calculation for d-DVCS

Projected results (KIN 1)

Projected results (KIN 3)

Projected results

Resolution effect

Calorimeter energy calibration We have 2 independent methods to check and correct the calorimeter calibration 1 st method : missing mass of D(e,eπ - )X reaction Mp2Mp2 By selecting n(e,eπ-)p events, one can predict the energy deposit in the calorimeter using only the cluster position. a minimisation between the measured and the predicted energy gives a better calibration.

Calorimeter energy calibration 2 nd method : Invariant mass of 2 detected photons in the calorimeter (π 0 ) π 0 invariant mass position check the quality of the previous calibration for each calorimeter region. Corrections of the previous calibration are possible. Nb of counts Invariant mass (GeV)