Parity Violating Electron Scattering in Resonance region (Res-Parity) (P05-xxx) P. Bosted, Hall A meeting, June 2005 Physics Overview Motivation Experiment.

Slides:



Advertisements
Similar presentations
Robert Michaels PREX at Trento PREX Workshop 09 Physics Interpretation of PREX 208 Pb E = 1 GeV, electrons on lead Elastic Scattering Parity Violating.
Advertisements

E : Spin-Duality Analysis update Patricia Solvignon Temple University, Philadelphia Hall A Collaboration Meeting, June 23-24, 2005.
DIS-Parity 12 GeV Physics opportunities in PVeS with a Solenoidal Spectrometer Many slides liberated from: P. Souder, K. Kumar (… and their sources) Kent.
Measuring the Neutron and 3 He Spin Structure at Low Q 2 Vincent Sulkosky for the JLab Hall A Collaboration College of William and Mary, Williamsburg VA.
The Spin Structure of 3 He and the Neutron at Low Q 2 : A Measurement of the Extended GDH Integral Vincent Sulkosky (for the JLab Hall A Collaboration)
April 06, 2005 JLab 12 GeV upgrade DOE Science Review 1 Fundamental Structure of Hadrons Zein-Eddine Meziani April 06, 2005 DOE Science Review for JLab.
Jin Huang PhD Candidate, MIT For MENU 2010 May 31, Williamsburg.
July 20-25, 2009N u F a c t 0 9 IIT, Chicago Quark-Hadron Duality in lepton scattering off nucleons/nuclei from the nucleon to the nucleus Krzysztof M.
1 First Measurement of the Structure Function b 1 on Tensor Polarized Deuteron Target at HERMES A.Nagaitsev Joint Institute for Nuclear Research, Dubna.
Yingchuan Li Weak Mixing Angle and EIC INT Workshop on Pertubative and Non-Pertubative Aspects of QCD at Collider Energies Sep. 17th 2010.
Recent Electroweak Results from the Tevatron Weak Interactions and Neutrinos Workshop Delphi, Greece, 6-11 June, 2005 Dhiman Chakraborty Northern Illinois.
Parity Violation in Electron Scattering Emlyn Hughes SLAC DOE Review June 2, 2004 *SLAC E122 *SLAC E158 *FUTURE.
Big Electron Telescope Array (BETA) Experimental Setup Expected Results Potential Physics from SANE Electron scattering provides a powerful tool for studying.
Proton polarization measurements in π° photo- production --on behalf of the Jefferson Lab Hall C GEp-III and GEp-2 γ collaboration 2010 Annual Fall Meeting.
Experiment Rosen07: Measurement of R =  L /  T on Deuterium in the Nucleon Resonance Region. 1  Physics  Data Analysis  Cross Section calculation.
Measurements of F 2 and R=σ L /σ T on Deuteron and Nuclei in the Nucleon Resonance Region Ya Li January 31, 2009 Jlab E02-109/E (Jan05)
Experiment Rosen07: Measurement of R =  L /  T on Deuterium in the Nucleon Resonance Region.  Physics  Experiment Setup  HMS Detectors  Calibrations.
A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago Argonne National Laboratory Office of Science U.S. Department.
Precision measurements of the F 2 structure function at large x in the resonance region and beyond S. Malace, PAC35 January 2010, Jefferson Lab Outline.
Experimental Approach to Nuclear Quark Distributions (Rolf Ent – EIC /15/04) One of two tag-team presentations to show why an EIC is optimal to access.
A High Precision Measurement of the Deuteron Spin-Structure Function Ratio g 1 /F 1  Motivation  Proposed Experiment  Expeced Results Co:spokespersons:
Res-Parity: Parity Violating Electron Scattering in the Resonance Region Paul E. Reimer y Peter Bosted y With much help from the talented Res-Parity spokespersons,
Spin and azimuthal asymmetries in SIDIS at JLAB  Physics Motivation  Jlab kinematics and factorization  Double spin asymmetries  Single Spin Asymmetries.
Event generator comparison Zhiwen Zhao 2013/12/03 original 2014/02/12 update 2014/11/04 update.
Particle Physics Chris Parkes Experimental QCD Kinematics Deep Inelastic Scattering Structure Functions Observation of Partons Scaling Violations Jets.
Determining Strangeness Quark Spin in Neutrino-Nucleon Scattering at J-PARC T.-A. Shibata (Tokyo Tech) in collaboration with N. Saito (Kyoto Univ) and.
Duality: Recent and Future Results Ioana Niculescu James Madison University Hall C “Summer” Workshop.
1 X. Zheng, talk at PAVI11, Rome, Italy PVDIS at JLab 6 GeV Xiaochao Zheng (Univ. of Virginia) September 7, 2011 Electroweak Standard Model and PVDIS Physics.
Measurement of F 2 and R=σ L /σ T in Nuclei at Low Q 2 Phase I Ya Li Hampton University January 18, 2008.
PVDIS at JLab 6 GeV Robert Michaels Jefferson Lab On Behalf of the HAPPEX Collaboration Acknowledgement: Talk prepared by Kai Pan (MIT graduate student)
May 17, 2006Sebastian Baunack, PAVI06 The Parity Violation A4 Experiment at forward and backward angles Strange Form Factors The Mainz A4 Experiment Result.
Xiaochao Zheng, International Workshop on Positrons at JLab 1/64 C 3q Measurement Using Polarized e + /e - Beams at JLab – Introduction — Standard Model.
1 Electroweak Physics Lecture 5. 2 Contents Top quark mass measurements at Tevatron Electroweak Measurements at low energy: –Neutral Currents at low momentum.
Neutral Current Deep Inelastic Scattering in ZEUS The HERA collider NC Deep Inelastic Scattering at HERA The ZEUS detector Neutral current cross section.
Jump to first page Quark-Hadron Duality Science Driving the 12 GeV Upgrade Cynthia Keppel for Jefferson Lab PAC 23.
A Measurement of Two-Photon Exchange in Unpolarized Elastic Electron-Proton Scattering John Arrington and James Johnson Northwestern University & Argonne.
7 April, 2005SymmetriesTests in Nuclear Physics Symmetry Tests in Nuclear Physics Krishna Kumar University of Massachusetts Editorial Board: Parity Violation:
Measurements with Polarized Hadrons T.-A. Shibata Tokyo Institute of Technology Aug 15, 2003 Lepton-Photon 2003.
Calorimetry for Deeply Virtual Compton Scattering in Hall A Alexandre Camsonne Hall A Jefferson Laboratory Workshop on General Purpose High Resolution.
Model independent extraction of neutron structure functions from deuterium data. Svyatoslav Tkachenko University of South Carolina.
Compton polarimetry for EIC. Outline Polarized electron beam Compton process Compton polarimeters at Jefferson Laboratory – Parity experiments at Jlab.
Nilanga Liyanage University of Virginia For Jefferson Lab Hall A, CLAS and RSS Collaborations.
Moller Polarimeter Q-weak: First direct measurement of the weak charge of the proton Nuruzzaman (
Spin Structure of the neutron (3He) in the resonance region Patricia Solvignon Temple University, Philadelphia For the JLAB Hall A and E Collaborations.
Ibrahim H. Albayrak, Hampton University Group Meeting Experiment Rosen07: Measurement of R =  L /  T on Deuterium in the Nucleon Resonance Region. 
Experiment Rosen07: Measurement of R =  L /  T on Deuterium in the Nucleon Resonance Region.  Physics  Data Analysis  Cross Section calculation 
P. Bosted PAC291 P. Bosted, J. Arrington, V. Dharmawardane, H. Mkrtchyan, X. Zheng  Physics Overview: Resonance structure, Duality, Nuclear effects in.
DIS-Parity: Measuring sin 2 θ W with Parity Violation in Deep Inelastic Scattering using Baseline Spectrometers at JLab 12 GeV Paul E. Reimer.
Hall C Summer Workshop August 6, 2009 W. Luo Lanzhou University, China Analysis of GEp-III&2γ Inelastic Data --on behalf of the Jefferson Lab Hall C GEp-III.
Double spin asymmetry measurement from SANE-HMS data at Jefferson Lab Hoyoung Kang For SANE collaboration Seoul National University DIS /04/23.
Experimental Studies of Spin Duality P. Bosted (JLab) Jlab Users Meeting, June 2005  Bloom-Gilman duality in inclusive g 1  Factorization in polarized.
G 0 Inelastics: Parity Violating Asymmetry in the N-  Transition Carissa Capuano College of William & Mary Hall C Meeting Jefferson Lab, Newport News.
Vahe Mamyan, Hall-C collaboration meeting, January Data Analysis of F2 and R in Deuterium and Nuclei  Physics  Experiment Setup  HMS Detectors.
CLAS Collaboration at Jefferson Lab Deuteron Spin Structure function g 1 at low Q 2 from EG4 Experiment Krishna P. Adhikari, Sebastian E. Kuhn Old Dominion.
1 Proton Structure Functions and HERA QCD Fit HERA+Experiments F 2 Charged Current+xF 3 HERA QCD Fit for the H1 and ZEUS Collaborations Andrew Mehta (Liverpool.
In the SM to the first order x: variable relevant to the nucleon internal structure Q 2 : Four-momentum transfer squared between the electron and the target.
Chen-Ning Yang Tsung-Dao Lee Chien-Shiung Wu In 1972, PVDIS result from SLAC E122 was consistent with sin 2 q W =1/4, confirmed the Standard Model prediction;
Timelike Compton Scattering at JLab
Flavor decomposition at LO
P. Solvignon, Duality Workshop
Explore the new QCD frontier: strong color fields in nuclei
Parity Violation in eP Scattering at JLab
Deep Inelastic Parity Robert Michaels, JLab Electroweak Physics
Study of Strange Quark in the Nucleon with Neutrino Scattering
A Precision Measurement of GEp/GMp with BLAST
Duality in Pion Electroproduction (E00-108) …
PVDIS June 2, 2011 PVDIS overview.
Duality in 12 GeV Era: Projected Results from E
Duality in Nuclei: The EMC Effect
Presentation transcript:

Parity Violating Electron Scattering in Resonance region (Res-Parity) (P05-xxx) P. Bosted, Hall A meeting, June 2005 Physics Overview Motivation Experiment Count rates and Errors Expected Results Request Summary: Easy experiment, never done before, relevant to wider community

PARITY VIOLATING ASYMMETRY The cross section in terms of electromagnetic, weak and interference contribution Asymmetry due to interference between Z 0 and Electron can scatter off of proton by exchanging either a virtual photon or a Z 0 eeee P eeee P Z0Z0 +

Deep Inelastic asymmetry In the Standard Model and assuming quark degrees of freedom, at LO In the valence region, for a proton target: x

Resonance region asymmetry For a resonance A RL can be written in terms of response functions Isospin symmetry relates weak and EM vector current Enchanced d,s quark contributions Sensitive to axial hadronic current also Details have so far been worked out only for N (1232) sensitive to axial vector transition form factor

A Simple Model sin 2 W = >axial current suppressed Isospin symmetry Negligible strange and charm form factors PROTON DEUTERON Different dependencies in the resonant and DIS cases Resonant case the current is expressed through the square of the sum over parton charges DIS case the sum of the square gives the current Assume r(W) r(W) depends on (I=0)/(I=1)

QUARK-HADRON DUALITY In QCD can be understood from an OPE of moments of structure functions Duality is described in OPE as higher twist (HT) effects being small or cancelling For spin-averaged structure function, duality works remarkably well to low values of Q 2

DUALITY for the gamma-Z interference tensor ? Leading order criteria DATA NEEDED! Duality is satisfied if on average n / p = 2/3 PROTON Simple Model Average of the (1232) and the elastic peak tend to equal the DIS curve Higher resonances oscillate around the DIS curve DIS model Resonance model

PHYSICS MOTIVATION Provide the first measurements of the parity violating asymmetries over the full resonance region for proton, deuteron, and carbon. Explore both global and local quark-hadron duality with the previously un-studied combination of structure functions Sensitive to down and strange quark currents Sensitive to axial hadronic current

PHYSICS MOTIVATION The results are of practical importance : Modeling neutrino cross sections needed for neutrino oscillation experiments. Understanding backgrounds and radiative corrections for other PV experiments (E in near future) Understanding the role of higher twist effects If duality is verified small higher twist effects

NEUTRINO OSCILLATION Major world-wide program to study neutrino mass, mixing Interpretation needs neutrino cross sections in few GeV region on various nuclei (proton, oxygen, steel, …) Neutrino beams not monochromatic, flux hard to measure: direct cross section measurements problematic Rely on models. Res-Parity will constrain models (especially d,s quark currents, axial hadronic current, and nuclear dependence: is EMC effect same for u and d quarks?).

BACKGROUND IN E158 SLAC E158 measured PV in Moller scattering, with large systematic error from low Q 2 ep background Res-PV will constrain models used to estimate the background Result is improved confidence in the important E158 limits on physics beyond the Standard Model

Experimental Setup Electrons detected by the two HRS independently Fast counting DAQ handle up to 1MHz rate with 10 3 pion rej. C, 25-cm LD2, LH2 targets (highest cooling power) Pol e - beam, 4.8 GeV, 80 uA, 80%, D P b /P b = 1.2% Beam intensity asymmetry controlled by parity DAQ Target density fluctuation & other false asym monitored by the Luminosity Monitor

KINEMATICS AND RATES Rates similar to E Pion/electron ratio smaller Run low E settings in one HRS, high E in other x Y Q 2 E W 2 /e MHz A/A for LD2 target

New Instruments and/or Upgrades Compton polarimeter: will use green laser (in progress); expect to achieve D P b /P b = 1.1% for electron analysis method; 25-cm long racetrack-shaped LH2/LD2 cell, 2.5 gm/cm 2 C target (as used in Hall C) FADC-based and scaler-based fast counting DAQs, both being developed by the E (PVDIS) collaboration.

PROJECTED STATISTICAL ERRORS Relative error of 5% to 10% per bin Local duality (3 resonance regions) tested at 4% level Global duality (whole region) tested at 2% level Ratio of proton/deuteron (d/u) and C/deuteron (EMC effect) tested to 3% level

SYSTEMATIC ERRORS Source A/A Beam Polarization Kinematic determination of Q 2 Detector and Electronic Linearity Electromagnetic radiative corrections Beam asymmetry Pion contamination Pair symmetric background Target purity and density fluctuations Total0.020 The ratio of asymmetries on hydrogen or C to deuterium is almost free of experimental systematic errors, allowing a very precise comparison with theory

REQUEST E Target P HRS-L/R time 4.8 GeV LH2 4.0, 3.2 GeV 2 days 4.8 GeV LH2 3.6, 2.8 GeV 2 days 4.8 GeV LD2 4.0, 3.2 GeV 2 days 4.8 GeV LD2 3.6, 3.8 GeV 2 days 4.8 GeV C 4.0, 3.2 GeV 2 days 4.8 GeV C 3.6, 2.8 GeV 2 dyas Checkout 4 hours Pass Change from E hours Polarization measurements 8 hours e + asymmetry 4 hours Total 13 days

REQUEST (continued) Electronics same as E Compton polarimeter as for E High beam polarization, moderately good beam stability and charge asymmetry (less stringent than Happex or G0)

COLLABORATION Experience in PV (E158, Happex, G0) Augments E (DIS-PV: more people to develop needed equipment

SUMMARY FIRST weak current measurements in full resonance region. Surprises possible. Measure A p, A d, and A C for M = 0.8 GeV 2 Relatively easy (for PV) experiment using same equipment as E Emphasizes d-quark contributions, sensitive to strangeness and axial hadronic current New regime for study of duality, higher twist effects, and EMC effect Needed to constrain models, which in turn are used for neutrino oscillation studies, backgrounds to experiments like SLAC E158, radiative corrections for DIS-parity experiments.

BACKUP SLIDES

DAQ: Comparison of two options FADC-based: Is what we eventually need (12 GeV program) Full event sampling for detailed off-line analysis; If there is a highly-rated experiment, 2 years is possible. Scaler-based: Similar to previous SLAC, and current Hall C scalers; Mostly work for the electronics group, easy to do; Still, need extra man-power and cost; Specialized; Only scaler info is recorded (on-line PID critical).

FADC-based Fast Counting DAQ

Scaler Electronics-based Fast Counting DAQ

RELATION TO PR Complementary: lower W and Q 2 Study HT lower Q 2 near W=2 GeV, effects bigger Both proton and deuteron used Information needed for precision DIS- Parity to accurately calculate radiative corrections and constrain HT.

COLLABORATION W. Boeglin, P Markowitz Florida International University, Miami, FL C Keppel Hampton University, Hampton VA G. Niculescu, I Niculescu James Madison University, Harrionburg, VA P. E. Bosted (spokesperson), V. Dharmawardane (co-spokesperson), R. Ent, D. Gaskell, J. Gomez. M. Jones, D. Mack, R. Michaels, J. Roche, B. Wojtsekhowski Jefferson Lab, Newport News, VA T. Forest, N. Simicevic, S. Wells Louisiana Tech University, Ruston, LO K. Kumar, K. Paschke University of Massachusetts, Amherst, MA F. R. Wesselmann Norfolk state university, Norfolk, VA Yongguang Liang, A. Opper Ohio state university, Athens, OH P. Decowski Smith College, Northampton, MA R. Holmes, P. Souder University of Syracuse, Syracuse, NY S. Connell, M. Dalton University of Witwatersrand, Johannesburg, South Africa R. Asaturyan, H. Mkrtchyan (co-spokesperson), T. Navasardyan, V. Tadevosyan Yerevan Physics Institute, Yerven, Armenia

Pion Background /e ratio ranges to 1.2 : average about 0.2 signal ~20x smaller than electron signal : net contamination average is 1% Pion asymmetry measured in 4 th layer lead glass (lead between 3 rd and 4 th layers to fill electron signal). Expect < 1ppm based on SLAC experiment

Kinematic Determination of Q 2 dA/A proportional to dQ 2 /Q 2 From standard HMS uncertainties of and 0.1% in E, central Q 2 determined to 0.8% Uncertainties in target, beam, collimater and quadrupole positions increase uncertainty in measured Q 2 to 1% Will be checked using normal counting mode at low beam current

RADIATIVE CORRECTIONS Un-radiated to radiated spin averaged cross section The ratio of radiated to un-radiated ed parity violating asymmetry (R p ) is close to unity Shape and magnitude of R p determined by the probablity for an electron to radiate a hard photon Radiative corrections for A p will be determined by an iterative fit to the data of this proposal systematic error in A p < 1% Determined by the x, Q 2 dependence of F 2

SFs for the interference tensor A RL in terms of structure functions for the interference tensor of EM and weak currents W1W1 W2W2 W3W3 Well measured Proportional to the weak interaction Can be use to study parity violating part of the weak neutral current Depending on the isospin of the final excited state the interference cross section is expected to show a resonance structure A RL can be used to test duality for a linear combination of W 1,2,3

OTHER PV EXPPERIMENTS Most electron PV experiments have focused on elastic channels SAMPLE at BATES, HAPPEX and G0 at Jlab, A4 at Mainz probe the strange quark form factors of the nucleon Qweak at Jlab searching for physics beyond the standard Model G0 plan to study N - transition No approved experiment to study the full resonance region! Essential in understanding the background in other PV experiments Largest systematic error of E158 Understand the role of HT effects