Precision fragmentation function measurements at Belle Trento, June 14 2007 M. Grosse Perdekamp (University of Illinois and RBRC) A. Ogawa (BNL/RBRC) R.

Slides:



Advertisements
Similar presentations
Hadron production in hard scattering Event GeneratorGEANT.
Advertisements

1 New target transverse spin dependent azimuthal asymmetries from COMPASS experiment Bakur Parsamyan INFN & University of Turin on behalf of the COMPASS.
Transversity and inclusive 2π production M. Radici - Pavia chiral-odd partner Collins effect k £ P h ¢ S T 2h asymmetry R £ P h ¢ S T Dihadron.
Mickey Chiu University of Illinois at Urbana-Champaign JPS/DNP, Maui 2005 September 18, 2005 New Prospects for Transverse Physics with the PHENIX detector.
Measurement of polarized distribution functions at HERMES Alessandra Fantoni (on behalf of the HERMES Collaboration) The spin puzzle & the HERMES experiment.
Electroweak b physics at LEP V. Ciulli INFN Firenze.
Constraining the polarized gluon PDF in polarized pp collisions at RHIC Frank Ellinghaus University of Colorado (for the PHENIX and STAR Collaborations)
Title Gabriella Sciolla Massachusetts Institute of Technology Representing the BaBar Collaboration Beauty Assisi, June 20-24, 2005 Searching for.
Recent Electroweak Results from the Tevatron Weak Interactions and Neutrinos Workshop Delphi, Greece, 6-11 June, 2005 Dhiman Chakraborty Northern Illinois.
DPF Victor Pavlunin on behalf of the CLEO Collaboration DPF-2006 Results from four CLEO Y (5S) analyses:  Exclusive B s and B Reconstruction at.
16 April 2005 APS 2005 Search for exclusive two body decays of B→D s * h at Belle Luminda Kulasiri University of Cincinnati Outline Motivation Results.
Measurement of R at CLEO - Jim Libby1 Measurement of R at CLEO Jim Libby University of Oxford.
Precision fragmentation function measurements at Belle Freiburg, June R. Seidl (University of Illinois and RBRC) Outline: Why QCD and spin physics?
Nov 2001 Craig Ogilvie 1 Angular Correlations at High pt: Craig Ogilvie for the Phenix Collaboration Energy-loss: increased medium-induced gluon-radiation.
Measurement of (Interference) Fragmentation Functions in e + e - at Anselm Vossen and Di-Hadron Correlations and DiFF Mini Workshop Pavia, Italy, September.
1 Transverse Spin Measurements at PHENIX John Koster for the PHENIX collaboration University of Illinois at Urbana-Champaign DIS /04/27.
Fragmentation Functions at Belle Anselm Vossen (University of Illinois) Matthias Grosse Perdekamp (University of Illinois) Martin Leitgab (University of.
New results on SIDIS SSA from JLab  Physics Motivation  Double spin asymmetries  Single Spin Asymmetries  Future measurements  Summary H. Avakian.
Status Report of HERMES Pasquale Di Nezza (on behalf of HERMES Collaboration) First measurement of transversity Exotic baryons: the pentaquark The spectrometer.
Single-spin asymmetries in two hadron production of polarized deep inelastic scattering at HERMES Tomohiro Kobayashi Tokyo Institute of Technology for.
Future Physics at JLab Andrew Puckett LANL medium energy physics internal review 12/14/
1 Transversity and inclusive 2-pion production Marco Radici Pavia TJNAF, May 2005 In collaboration with: A. Bacchetta (Univ. Regensburg)
Recent Charm Measurements through Hadronic Decay Channels with STAR at RHIC in 200 GeV Cu+Cu Collisions Stephen Baumgart for the STAR Collaboration, Yale.
Jim Stewart DESY Measurement of Quark Polarizations in Transversely and Longitudinally Polarized Nucleons at HERMES for the Hermes collaboration Introduction.
Measurements of chiral-odd fragmentation functions at Belle D. Gabbert (University of Illinois and RBRC) M. Grosse Perdekamp (University of Illinois and.
Measurements of chiral-odd fragmentation functions at Belle D. Gabbert (University of Illinois and RBRC) M. Grosse Perdekamp (University of Illinois and.
Measurements of chiral-odd fragmentation functions at Belle D. Gabbert (University of Illinois and RBRC) M. Grosse Perdekamp (University of Illinois and.
Measurements of chiral-odd fragmentation functions at Belle D. Gabbert (University of Illinois and RBRC) M. Grosse Perdekamp (University of Illinois and.
Measurements of fragmentation functions at Belle: results and prospects D. Gabbert (University of Illinois and RBRC) M. Grosse Perdekamp (University of.
Measurements of chiral-odd fragmentation functions at Belle D. Gabbert (University of Illinois and RBRC) M. Grosse Perdekamp (University of Illinois and.
Measurements of chiral-odd fragmentation functions at Belle D. Gabbert (University of Illinois and RBRC) M. Grosse Perdekamp (University of Illinois and.
Oct 6, 2008Amaresh Datta (UMass) 1 Double-Longitudinal Spin Asymmetry in Non-identified Charged Hadron Production at pp Collision at √s = 62.4 GeV at Amaresh.
Transverse Spin Physics at RHIC M. Grosse Perdekamp (University of Illinois and RBRC) International Workshop on Semi-Inclusive Reactions and 3D-Parton.
JPARC DY Workshop, April 7 Ralf Seidl (RBRC) R.Seidl: Transverse Spin 1RIKEN, April 7 In JPARC Drell Yan accessible with: UU(unpolarized beam, unpolarized.
Transverse Single-Spin Asymmetries Understanding the Proton: One of the fundamental building blocks of ordinary matter! Spin decomposition of proton still.
Transverse Spin Dependent Di-Hadron Fragmentation Functions at Anselm Vossen (University of Illinois) Matthias Grosse Perdekamp (University of Illinois)
Outline: The Belle detector unpolarized fragmentation function measurements Understanding the systematics for precision measurements at high z Expected.
Transverse Spin dependent Fragmentation Functions at Anselm Vossen (University of Illinois) Matthias Grosse Perdekamp (University of Illinois) Martin Leitgab.
8 th Circum Pan Pacific Symposium on High Energy Spin Physics Cairns, June 21, 2011 Ralf Seidl (RIKEN) for the Belle Collaboration.
1 Luciano Pappalardo Transversity at GPD 2008 ECT, Trento 12 June 2008.
Collins Asymmetries in Belle Measurement of Collins Asymmetries in e + e - Annihilation at the KEK B-Factory XII Workshop on High Energy Spin 2007 Joint.
Delia Hasch Transversity & friends from HERMES International workshop on hadron and spectroscopy, Torino, Italy, 31. March – 02. April 2008 outline outline.
Single-spin asymmetry in interference fragmentation on a transversely polarized hydrogen target at HERMES Tomohiro Kobayashi Tokyo Institute of Technology.
Charged Particle Multiplicity, Michele Rosin U. WisconsinQCD Meeting May 13, M. Rosin, D. Kçira, and A. Savin University of Wisconsin L. Shcheglova.
A High Statistics Study of the Decay M. Fujikawa for the Belle Collaboration Outline 1.Introduction 2.Experiment Belle detector 3.Analysis Event selection.
Transversity 2005, Como Two-hadron Adam Mielech INFN Trieste on behalf of COMPASS collaboration 7-10th. September 2005.
First Measurement of the Collins fragmentation function at Belle M. Grosse Perdekamp (University of Illinois and RBRC) K. Hasuko (RIKEN/RBRC) S. Lange.
Transverse Spin Dependent Di-Hadron Fragmentation Functions at Anselm Vossen (University of Illinois) Matthias Grosse Perdekamp (University of Illinois)
1 CLAS-eg1 pol.-proton analysis H.Avakian (JLab) semi-SANE Collaboration Meeting April 21, 2005.
Outline: The Belle detector unpolarized fragmentation function measurements Understanding the systematics for precision measurements at high z Expected.
Flavor decomposition at LO
Measurements of quark transversity and orbital motion in hard scattering Yoshiyuki Miyachi Tokyo Institute of Technology.
Chiral-odd fragmentation functions at Belle
Spin dependent fragmentation function analysis at Belle
Luciano Pappalardo for the collaboration
Fragmentation measurements in Belle and Babar and impact on RHIC
Experimental Study of Transversity
New Results for Transverse Spin Effects at COMPASS
M. Contalbrigo (on behalf of HERMES collaboration)
Larisa Nogach Institute of High Energy Physics, Protvino
Selected Physics Topics at the Electron-Ion-Collider
Event Shape Variables in DIS Update
University of Minnesota on behalf of the CLEO Collaboration
Single Spin Asymmetry with a Transversely Polarized
kT Asymmetry in Longitudinally Polarized pp Collisions
Transverse Spin Physics at RHIC II
Hadron Fragmentation New Results from Belle
Observation of Diffractively Produced W- and Z-Bosons
Belle Fragmentation activity
Paul van der Nat (on behalf of the HERMES collaboration)
Presentation transcript:

Precision fragmentation function measurements at Belle Trento, June M. Grosse Perdekamp (University of Illinois and RBRC) A. Ogawa (BNL/RBRC) R. Seidl (University of Illinois and RBRC) Outline: The Collins function measurements Access to transversity over Collins fragmentation function Collins function measurements at Belle The Belle detector Improved statistics with on_resonance data Interference fragmentation function measurements unpolarized fragmentation function measurements

R.Seidl: Fragmentation function measurements at Belle2 Trento, June 14 th SIDIS experiments (HERMES and COMPASS, eRHIC) measure q(x) together with either Collins Fragmentation function or Interference Fragmentation function Towards a global transversity analysis RHIC measures the same combinations of quark Distribution (DF) and Fragmentation Functions (FF) plus unpolarized DF q(x) There are always 2 unknown functions involved which cannot be measured independently Spin dependent Fragmentation function analysis in e + e - Annihilation yields information on the Collins and the Interference Fragmentation function ! Comlpex universality?

R.Seidl: Fragmentation function measurements at Belle3 Trento, June 14 th KEKB: L>1.6x10 34 cm -2 s -1 !! Asymmetric collider 8GeV e GeV e + s = 10.58GeV ( (4S)) e + e - S Off-resonance: GeV e + e - q q (u,d,s,c) Integrated Luminosity: >700 fb -1 >60fb -1 => off-resonance Belle detector KEKB

R.Seidl: Fragmentation function measurements at Belle4 Trento, June 14 th Good tracking and particle identification!

R.Seidl: Fragmentation function measurements at Belle5 Trento, June 14 th e-e- e+e+ Jet axis: Thrust = 6.4 Near-side Hemisphere: h i, i=1,N n with z i Far-side: h j, j=1,N f with z j Event Structure at Belle e + e - CMS frame: Spin averaged cross section:

R.Seidl: Fragmentation function measurements at Belle6 Trento, June 14 th Collins fragmentation in e + e - : Angles and Cross section cos( ) method 2-hadron inclusive transverse momentum dependent cross section: Net (anti-)alignment of transverse quark spins e + e - CMS frame: e-e- e+e+ [D.Boer: PhD thesis(1998)]

R.Seidl: Fragmentation function measurements at Belle7 Trento, June 14 th Collins fragmentation in e + e - : Angles and Cross section cos(2 ) method 2-hadron inclusive transverse momentum dependent cross section: Net (anti-)alignment of transverse quark spins Independent of thrust-axis Convolution integral I over transverse momenta involved e + e - CMS frame: e-e- e+e+ [Boer,Jakob,Mulders: NPB504(1997)345]

R.Seidl: Fragmentation function measurements at Belle8 Trento, June 14 th Applied cuts, binning Off-resonance data –60 MeV below (4S) resonance –29.1 fb -1 Later also on-resonance data: 547 fb -1 Track selection: –pT > 0.1GeV –vertex cut: dr<2cm, |dz|<4cm Acceptance cut –-0.6 < cos i < 0.9 Event selection: –Ntrack 3 –Thrust > 0.8 –Z 1, Z 2 >0.2 Hemisphere cut Q T < 3.5 GeV z1z1 z2z = Diagonal bins z1z1 z2z2

R.Seidl: Fragmentation function measurements at Belle9 Trento, June 14 th Examples of fits to azimuthal asymmetries D 1 : spin averaged fragmentation function, H 1 : Collins fragmentation function N( )/N 0 No change in cosine moments when including sine and higher harmonics Cosine modulations clearly visible 2 )

R.Seidl: Fragmentation function measurements at Belle10 Trento, June 14 th Methods to eliminate gluon contributions: Double ratios and subtractions Double ratio method: Subtraction method: Pros: Acceptance cancels out Cons: Works only if effects are small (both gluon radiation and signal) Pros: Gluon radiation cancels out exactly Cons: Acceptance effects remain 2 methods give very small difference in the result

R.Seidl: Fragmentation function measurements at Belle11 Trento, June 14 th Testing the double ratios with MC Asymmetries do cancel out for MC Double ratios of compatible with zero Mixed event pion pairs also show zero result Asymmetry reconstruction works well for MC (weak decays) Single hemisphere analysis yields zero Double ratios are safe to use uds MC (UL/L double ratios) uds MC (UL/C double ratios) Data ( )

R.Seidl: Fragmentation function measurements at Belle12 Trento, June 14 th Other Favored/Unfavored Combinations charged pions or Unlike-sign pion pairs (U): (favored x favored + unfavored x unfavored) Like-sign pion pairs (L): (favored x unfavored + unfavored x favored) ± pairs (favored + unfavored) x (favored + unfavored) P.Schweitzer([hep-ph/ ]): charged pairs are similar (and easier to handle) (C): (favored + unfavored) x (favored + unfavored) Challenge: current double ratios not very sensitive to favored to disfavored Collins function ratio Examine other combinations: Favored= u,d,cc. Unfavored= d,u,cc. Build new double ratios: Unlike-sign/ charged pairs (UC) UL UC

R.Seidl: Fragmentation function measurements at Belle13 Trento, June 14 th What about the data under the resonance? More than 540 fb -1 of on_resonance data (4S) is just small resonance More than 75% of hadronic cross section from open quark-antiquark production

R.Seidl: Fragmentation function measurements at Belle14 Trento, June 14 th Why is it possible to include on_resonance data? Different Thrust distributions e + e - q q (u d s) MC (4S) B + B - MC (4S) B 0 B 0 MC Largest systematic errors reduce with more statistics Charm-tagged Data sample also increases with statistics e + e - qq ̅, quds e + e - cc ̅

R.Seidl: Fragmentation function measurements at Belle15 Trento, June 14 th Improved systematic errors (UC) Tau contribution PID error MC double ratios Charged ratios ( higher moments in Fit difference double ratio-subtraction method reweighted MC-asymmetries: cos asymmetries underestimated rescaled with 1.21 Correlation studies: statistical error rescaled by1.02 (UL) and 0.55 (UC) – after rigorous error calculation correct Beam polarization studies consistent with zero Correction of charm events A 0 (cos(2 )) moments A 12 (cos( )) moments

R.Seidl: Fragmentation function measurements at Belle16 Trento, June 14 th Final charm corrected results for e + e - X (29fb -1 of continuum data) Significant non-zero asymmetries Rising behavior vs. z cos( + ) double ratios only marginally larger UC asymmetries about % of UL asymmetries First direct measurements of the Collins function Final results Preliminary results

R.Seidl: Fragmentation function measurements at Belle17 Trento, June 14 th Charm corrected results for e + e - X (547 fb -1 ) Significance largely increased Behavior unchanged Reduced systematic errors due to statistics Precise measurements of the Collins function PRELIMINAR Y

R.Seidl: Fragmentation function measurements at Belle18 Trento, June 14 th Collins asymmetries II: sin 2 /(1+cos 2 ) binning (UL) Nonzero quark polarization ~ sin 2 Unpolarized de- nominator ~ 1+cos 2 Clear linear behavior seen when using either thrustz or 2 nd hadron as polar angle Better agreement for thrust axis (~approximate quark axis) UC plots similar thrustz PRELIMINARY

R.Seidl: Fragmentation function measurements at Belle19 Trento, June 14 th e + e - ( + - ) jet1 ( - + ) jet2 X Stay in the mass region around -mass Find pion pairs in opposite hemispheres Observe angles 1 2 between the event-plane (beam, jet-axis) and the two two-pion planes. Transverse momentum is integrated (universal function, evolution easy directly applicable to semi-inclusive DIS and pp) Theoretical guidance by papers of Boer,Jakob,Radici[PRD 67,(2003)] and Artru,Collins[ZPhysC69(1996 )] Early work by Collins, Heppelmann, Ladinsky [NPB420(1994)] Interference Fragmentation – thrust method 2 1 Model predictions by: Jaffe et al. [PRL 80,(1998)] Radici et al. [PRD 65,(2002)]

R.Seidl: Fragmentation function measurements at Belle20 Trento, June 14 th Similar to previous method Observe angles 1R 2R between the event-plane (beam, two-pion-axis) and the two two-pion planes. Theoretical guidance by Boer,Jakob,Radici Interference Fragmentation – method R2 R1

R.Seidl: Fragmentation function measurements at Belle21 Trento, June 14 th Different model predictions for IFF Jaffe et al. [Phys. Rev. Lett. 80 (1998)] : inv. mass behavior out of - phaseshift analysis sign change at mass -originally no predictions on actual magnitudes -Tang included some for RHIC-Spin Radici et al. [Phys. Rev. D65 (2002)] : Spectator model in the s-p channel no sign change observed (updated model has Breit-Wigner like asymmetry) PRELIMINARY f 1, h 1 from spectator model f 1, h 1 =g 1 from GRV98 & GRSV96

R.Seidl: Fragmentation function measurements at Belle22 Trento, June 14 th Unpolarized FF as important input for all precise QCD measurements MC simulation, ~1.4 fb No low-Q 2 data available important for evolution No high-z data available Huge amount of B-factory data can help Favored/Disfavored disentangling by detecting hadron pairs (as in Collins analysis)?

R.Seidl: Fragmentation function measurements at Belle23 Trento, June 14 th Summary and outlook A first successful global analysis of transversity data using the HERMES,COMPASS and published Belle data Belle Collins data largely improved from fb -1 Significant, nonzero asymmetries Collins function is large Long Collins paper is nearly finished Continue to measure precise spin dependent fragmentation functions at Belle –k T dependence of Collins function –Favored/disfavored disentanglement –Initerference Fragmentation function measurements (started) Measure precise unpolarized fragmentation functions of many final states Important input for general QCD physics and helicity structure measurements Measure other interesting QCD-related quantities at Belle: –Chiral-odd -fragmentation function –Event shapes –R-ratio with ISR

R.Seidl: Fragmentation function measurements at Belle24 Trento, June 14 th Backup Slides

R.Seidl: Fragmentation function measurements at Belle25 Trento, June 14 th B, charm and uds contributions in the data uds quarks charm quarks Charged B-mesons Neutral B-mesons Open symbols: charm enhanced data sample used for charm correction Full symbols: main data sample

R.Seidl: Fragmentation function measurements at Belle26 Trento, June 14 th Collins asymmetries IIa: sin 2 /(1+cos 2 ) binning (UC) Nozeron quark polarization ~ sin 2 Unpolarized de- nominator ~ 1+cos 2 Clear linear behavior seen when using either thrustz or 2 nd hadron as polar angle Better agreement for thrust axis (~approximate quark axis) Similar behavior, smaller magnitude as UL asymmetries thrustz PRELIMINARY

R.Seidl: Fragmentation function measurements at Belle27 Trento, June 14 th Collins asymmetries III: Q T binning (UL) Reduced asymmetries in low thrust sample At low thrust significant B contribution (for t<0.8 ~20 % B for t>0.8 < 1 % B) A 12 thrust axis dependent High Q T (>3.5 GeV) asymmetries from beam related BG UC plots similar Thrust>0.8 Thrust<0.8 (not corrected for heavy quark contributions) PRELIMINARY

R.Seidl: Fragmentation function measurements at Belle28 Trento, June 14 th Collins asymmetries IIIa: Q T binning (UC) Reduced asymmetries in low thrust sample At low thrust significant heavy quark contribution High Q T (>3.5 GeV) asymmetries from beam related BG similar behavior, but smaller magnitude as UL asymmetries Thrust>0.8 Thrust<0.8 (not corrected for heavy quark contributions) PRELIMINARY

R.Seidl: Fragmentation function measurements at Belle29 Trento, June 14 th What would we see in e + e - ? Simply modeled the shapes of these predictions in an equidistant Mass1 x Mass2 binning m1 m2 Jaffe Radici