“Developments on linear and circular splicing” Paola Bonizzoni, Clelia De Felice, Giancarlo Mauri, Rosalba Zizza Dipartimento di Informatica Sistemistica.

Slides:



Advertisements
Similar presentations
DNA and splicing (circular) Dipartimento di Informatica Sistemistica e Comunicazioni, Univ. di Milano - Bicocca ITALY Dipartimento di Informatica e Applicazioni,
Advertisements

Molecular Computing Formal Languages Theory of Codes Combinatorics on Words.
Formal Languages Theory of Codes Combinatorics on words Molecular Computing.
Towards a characterization of regular languages generated by finite splicing systems: where are we? Ravello, Settembre 2003 Paola Bonizzoni, Giancarlo.
Two-dimensional Rational Automata: a bridge unifying 1d and 2d language theory Marcella Anselmo Dora Giammarresi Maria Madonia Univ. of Salerno Univ. Roma.
Formal Languages: main findings so far A problem can be formalised as a formal language A formal language can be defined in various ways, e.g.: the language.
Lecture 24 MAS 714 Hartmut Klauck
CSCI 4325 / 6339 Theory of Computation Zhixiang Chen Department of Computer Science University of Texas-Pan American.
Finite Automata Section 1.1 CSC 4170 Theory of Computation.
Regular operations Sipser 1.1 (pages 44 – 47). CS 311 Mount Holyoke College 2 Building languages If L is a language, then its complement is L’ = {w |
Reducibility Sipser 5.1 (pages ). CS 311 Fall Reducibility.
Reducibility Sipser 5.1 (pages ).
Introduction to Computability Theory
1 Introduction to Computability Theory Lecture7: PushDown Automata (Part 1) Prof. Amos Israeli.
CS5371 Theory of Computation
Courtesy Costas Busch - RPI1 Non Deterministic Automata.
1 Linear Bounded Automata LBAs. 2 Linear Bounded Automata are like Turing Machines with a restriction: The working space of the tape is the space of the.
Sets Definition of a Set: NAME = {list of elements or description of elements} i.e. B = {1,2,3} or C = {x  Z + | -4 < x < 4} Axiom of Extension: A set.
FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY
1 Finite Automata. 2 Finite Automaton Input “Accept” or “Reject” String Finite Automaton Output.
Foundations of (Theoretical) Computer Science Chapter 2 Lecture Notes (Section 2.2: Pushdown Automata) Prof. Karen Daniels, Fall 2009 with acknowledgement.
1 Single Final State for NFAs and DFAs. 2 Observation Any Finite Automaton (NFA or DFA) can be converted to an equivalent NFA with a single final state.
Find all subgroups of the Klein 4- Group. How many are there?
Fall 2006Costas Busch - RPI1 Non-Deterministic Finite Automata.
Costas Busch - LSU1 Non-Deterministic Finite Automata.
1 Non-Deterministic Finite Automata. 2 Alphabet = Nondeterministic Finite Automaton (NFA)
INHERENT LIMITATIONS OF COMPUTER PROGRAMS CSci 4011.
1Introduction 2Theoretical background Biochemistry/molecular biology 3Theoretical background computer science 4History of the field 5Splicing systems.
THEORY OF COMPUTATION 08 KLEENE’S THEOREM.
Theory of Computation, Feodor F. Dragan, Kent State University 1 Regular expressions: definition An algebraic equivalent to finite automata. We can build.
Introduction to CS Theory Lecture 3 – Regular Languages Piotr Faliszewski
1 INFO 2950 Prof. Carla Gomes Module Modeling Computation: Language Recognition Rosen, Chapter 12.4.
Regulated Pushdown Automata Alexander Meduna 1/22 Faculty of Information Technology Brno University of Technology Brno, Czech Republic, Europe.
Athasit Surarerks THEORY OF COMPUTATION 07 NON-DETERMINISTIC FINITE AUTOMATA 1.
1 Random generation of words with fixed occurrences of symbols in regular languages A. Bertoni P. Massazza R. Radicioni 1 Università degli Studi di Milano,
Decidable Questions About Regular languages 1)Membership problem: “Given a specification of known type and a string w, is w in the language specified?”
Computing languages by (bounded) local sets Dora Giammarresi Università di Roma “Tor Vergata” Italy.
CSCI 2670 Introduction to Theory of Computing August 25, 2005.
CHAPTER 1 Regular Languages
Chapter 5: Permutation Groups  Definitions and Notations  Cycle Notation  Properties of Permutations.
“New results on finite H-systems” Budapest, 29/30 November 2002 Jointly with Paola Bonizzoni, Clelia De Felice, Giancarlo Mauri Dipartimento di Informatica.
Finite Automata – Definition and Examples Lecture 6 Section 1.1 Mon, Sep 3, 2007.
A Membrane Algorithm for the Min Storage problem Dipartimento di Informatica, Sistemistica e Comunicazione Università degli Studi di Milano – Bicocca WMC.
1 Linear Bounded Automata LBAs. 2 Linear Bounded Automata (LBAs) are the same as Turing Machines with one difference: The input string tape space is the.
 2005 SDU Lecture13 Reducibility — A methodology for proving un- decidability.
Foundations of (Theoretical) Computer Science Chapter 2 Lecture Notes (Section 2.2: Pushdown Automata) Prof. Karen Daniels, Fall 2010 with acknowledgement.
An Introduction to Rabin Automata Presented By: Tamar Aizikowitz Spring 2007 Automata Seminar.
Formal Languages Finite Automata Dr.Hamed Alrjoub 1FA1.
Solving Numerical NP-complete Problems with Spiking Neural P Systems Dipartimento di Informatica, Sistemistica e Comunicazione Università degli Studi di.
 2004 SDU Uniquely Decodable Code 1.Related Notions 2.Determining UDC 3.Kraft Inequality.
Fall 2004COMP 3351 Finite Automata. Fall 2004COMP 3352 Finite Automaton Input String Output String Finite Automaton.
Formal Methods in software development
ماشین های تورینگ، تشخیص پذیری و تصمیم پذیری زبان ها
Non Deterministic Automata
Formal Language & Automata Theory
Chapter 4: Cyclic Groups
CSE322 Finite Automata Lecture #2.
CSE322 The Chomsky Hierarchy
Closure Properties for Regular Languages
Non-Deterministic Finite Automata
Non-Deterministic Finite Automata
CSE322 Definition and description of finite Automata
Non Deterministic Automata
Dipartimento di Informatica e Applicazioni, Univ. of Salerno, ITALY
CSE322 Minimization of finite Automaton & REGULAR LANGUAGES
Formal Methods in software development
Chapter 1 Regular Language
CSC 4170 Theory of Computation Finite Automata Section 1.1.
Kleene’s Theorem (Part-3)
Non Deterministic Automata
Presentation transcript:

“Developments on linear and circular splicing” Paola Bonizzoni, Clelia De Felice, Giancarlo Mauri, Rosalba Zizza Dipartimento di Informatica Sistemistica e Comunicazioni, Univ. di Milano - Bicocca ITALY Dipartimento di Informatica e Applicazioni, Univ. di Salerno, ITALY Circular splicing and regularity (submitted, 2001) Developments on circular splicing (WORDS01, Palermo 2001) On the power of linear and circular splicing (submitted 2002) Bibliography:

Problem 1 Problem 2 Characterize circular regular languages generated by finite circular splicing Structure of circular regular languages (regular languages closed under conjugacy relation) CIRCULAR SPLICING

Circular languages(Formal) languages closed under conjugation Regular Circular (Paun) splicing systems SC PA = (A, I, R) R  A* | A* $ A* | A* rules ~hu1u2,~hu1u2, ~ku3u4~ku3u4  A~ A~ r = u 1 | u 2 $ u 3 | u 4  R u 2 hu 1 u4ku3u4ku3 ~ u 2 hu 1 u 4 ku 3 A= finite alphabet, I  A ~ initial language, In the literature... Other definitions, other models, additional hypothesis (on R)

Contributions [Words99, DNA6, Words01, submitted] -Reg ~  C(Fin, Fin) C(SC H )  C(SC PA )  C(SC PI )  ~ Reg ~ ((A 2 )*  (A 3 )*)  ~ Reg \ C(SC PI ) Computational power of (finite) Pixton’s systems (no additional hyp.) dna6 new! All known examples of regular circular splicing languages  F (a class of languages Pixton generated) ~ X*, X finite set (X* closed under conj.) or X regular group code ~ X*, X* closed under conj. and fingerprint closed cyclic and weak cyclic languages

The case of one-letter alphabet ( Each language on a* is closed under conjugacy relation) L  a* is CPA generatedL =L 1  (a G ) + L 1 is a finite set  n : G is a set of representatives of the elements in a subgroup G’ of Z n max{ m | a m  L 1 } < n = min{ a g | a g  G } = min a G L  a* CPA generated by I = L 1  a G and R= { a n | 1 $ 1 | a n } Example L = { a 3, a 4 }  { a 6, a 14, a 16 } + I={} R={ } I={a 3, a 4, a 6, a 14, a 16 } R={ a 6 | 1 $ 1 | a 6 } Complexity description / minimal splicing system Characterization (extended to uniform languages: J  N, L = A J =  j  J A j = {w  A * | |w|=j})

Given L  a*, we CAN NOT DECIDE whether L is generated by a circular (Paun) splicing system (Rice’s theorem) Theorem Given L  a*, regular, we decide whether L is generated by a finite circular (Paun) splicing system The proof is quite technical... via automata (frying-pan shape) properties

Paun’s definition Linear (iterated) splicing systems (A= finite alphabet, I  A * initial language) S PA = (A, I, R) R  A* | A* $ A* | A* rules x u 1 u 2 y,wu3u4 zwu3u4 z  A*, A*, r = u 1 | u 2 $ u 3 | u 4  R x u 1 u 4 z, wu 3 u 2 y A known result: Fin  H(Fin, Fin)  Reg Problem (HEAD): Can we decide whether a regular language is generated by a finite splicing system? [Head; Paun; Pixton; 1996-] Result: Result: [P. B., C. Ferretti, G. M., R.Z., IPL ‘01] Strict inclusion among the three definitions of (finite) splicing

Splicing languages defined by markers M M = w [x] = { wx’ | x’  [x] } where |{ q  Q |  (q, m), m  M is defined }| =1 and |[x]| finite or  x’  [x] s.t. x’ cycle Existence of a (right) marker for L: decidible Trim automaton for L: exist y 1,y 2 s.t. y 1 m y 2  L L(M)={ y  L | y=y’ 1 m y’ 2, y’ 1  [y 1 ], y’ 1  [y 1 ], m  M } = L(S) w [x]