EU PWI TF- 7th General meeting –Frascati 27- 29/10/2008 PWI aspects of the FAST (Fusion Advanced Studies Torus) project Presented by G. Maddaluno Outline.

Slides:



Advertisements
Similar presentations
EFDA meeting on EU contribution to JT60SA Research plan version 3 (ENEA Frascati may 2011 Aula B Brunelli ) 1 of 18 slides Research strategy of JT60SA.
Advertisements

G. Arnoux (1/19) SEWG on transient heat loads Ljubljana, 02/10/2009 Heat load measurements on JET first wall during disruptions G. Arnoux, M. Lehnen, A.
EU-PWI Taskforce EU PWI TF Meeting Nov. 4 – 6, 2009, Warsaw Summary of the PSI facility review meeting presented by R. Neu based on the Summary of the.
Progress with PWI activities at UKAEA Fusion GF Counsell, A Kirk, E Delchambre, S Lisgo, M Forrest, M Price, J Dowling, F Lott, B Dudson, A Foster,
A new look at the specification of ITER plasma wall interaction and tritium retention J. Roth a, J. Davis c, R. Doerner d, A. Haasz c, A. Kallenbach a,
Alberto Loarte EU Plasma-Wall Interaction Task Force Meeting – CIEMAT – 10 – ITER Design Review Activities on Steady State and Transient Power.
Th Loarer - SEWG on Fuel retention – JET, July Th Loarer with special thanks to S Brezinsek, J Bucalossi, I Coffey, G Esser, S Gruenhagen.
Joint SEWGs-TFE meeting S. Brezinsek22/07/2008 TF E Impact of N 2 on carbon chemistry in JET S. Brezinsek, Y. Corre and TFE.
Slide Nov 2006, EFDA PWI meeting, LjubljanaI.S. Landman, FZ-Karlsruhe Modelling on Wall Surfaces and Tokamak Plasma Consequences of ITER Transient.
1E. Tsitrone PWI TF meeting, 27-29/10/2008, Frascati Euratom International context : ITPA (International Tokamak Physics Activity) Changes in the ITPA.
PWI questions of ITER review working groups WG1 and WG8 : Materials Introduction EU PWI TF V. Philipps, EU PWI TF meeting, Oct 2007, Madrid V. Philipps,
Institute for Plasma Physics Rijnhuizen D retention in W and mixed systems in Pilot-PSI G. De Temmerman a, K. Bystrov a, L. Marot b, M. Mayer c, J.J. Zielinski.
Physics Basis of FIRE Next Step Burning Plasma Experiment Charles Kessel Princeton Plasma Physics Laboratory U.S.-Japan Workshop on Fusion Power Plant.
Introduction to Plasma-Surface Interactions Lecture 6 Divertors.
Thermal Load Specifications from ITER C. Kessel ARIES Project Meeting, May 19, 2010 UCSD.
6th Japan Korea workshop July 2011, NIFS, Toki-city Japan Edge impurity transport study in stochastic layer of LHD and scrape-off layer of HL-2A.
First Wall Heat Loads Mike Ulrickson November 15, 2014.
Alberto Loarte 10 th ITPA Divertor and SOL Physics Group Avila – Spain 7/10 – 1 – Update on Thermal Loads during disruptions and VDEs A. Loarte.
Exploring Capability to Calculate Heat Loads on Divertors and Walls T.K. Mau UC-San Diego ARIES Pathways Project Meeting September 6-7, 2007 Idaho Falls,
Physics of fusion power Lecture 14: Anomalous transport / ITER.
Integrated Effects of Disruptions and ELMs on Divertor and Nearby Components Valeryi Sizyuk Ahmed Hassanein School of Nuclear Engineering Center for Materials.
Progress on Determining Heat Loads on Divertors and First Walls T.K. Mau UC-San Diego ARIES Pathways Project Meeting December 12-13, 2007 Atlanta, Georgia.
DEMO Parameters – Preliminary Considerations David Ward Culham Science Centre This work was jointly funded by the EPSRC and by EURATOM.
Physics of fusion power Lecture 8 : The tokamak continued.
Energy loss for grassy ELMs and effects of plasma rotation on the ELM characteristics in JT-60U N. Oyama 1), Y. Sakamoto 1), M. Takechi 1), A. Isayama.
A. HerrmannITPA - Toronto /19 Filaments in the SOL and their impact to the first wall EURATOM - IPP Association, Garching, Germany A. Herrmann,
N EOCLASSICAL T OROIDAL A NGULAR M OMENTUM T RANSPORT IN A R OTATING I MPURE P LASMA S. Newton & P. Helander This work was funded jointly by EURATOM and.
Y. Sakamoto JAEA Japan-US Workshop on Fusion Power Plants and Related Technologies with participations from China and Korea February 26-28, 2013 at Kyoto.
Recent JET Experiments and Science Issues Jim Strachan PPPL Students seminar Feb. 14, 2005 JET is presently world’s largest tokamak, being ½ linear dimension.
Prof. F.Troyon“JET: A major scientific contribution...”25th JET Anniversary 20 May 2004 JET: A major scientific contribution to the conception and design.
1 ST workshop 2005 Numerical modeling and experimental study of ICR heating in the spherical tokamak Globus-M O.N.Shcherbinin, F.V.Chernyshev, V.V.Dyachenko,
Simulation Study on behaviors of a detachment front in a divertor plasma: roles of the cross-field transport Makoto Nakamura Prof. Y. Ogawa, S. Togo, M.
PIC simulations of the propagation of type-1 ELM-produced energetic particles on the SOL of JET D. Tskhakaya 1, *, A. Loarte 2, S. Kuhn 1, and W. Fundamenski.
Edge Localized Modes propagation and fluctuations in the JET SOL region presented by Bruno Gonçalves EURATOM/IST, Portugal.
1 Modeling of EAST Divertor S. Zhu Institute of Plasma Physics, Chinese Academy of Sciences.
1 Development of integrated SOL/Divertor code and simulation study in JT-60U/JT-60SA tokamaks H. Kawashima, K. Shimizu, T. Takizuka Japan Atomic Energy.
Physics of fusion power Lecture 10: tokamak – continued.
第16回 若手科学者によるプラズマ研究会 JAEA
NSTX-U NSTX-U PAC-31 Response to Questions – Day 1 Summary of Answers Q: Maximum pulse length at 1MA, 0.75T, 1 st year parameters? –A1: Full 5 seconds.
ITER Standard H-mode, Hybrid and Steady State WDB Submissions R. Budny, C. Kessel PPPL ITPA Modeling Topical Working Group Session on ITER Simulations.
14 Oct. 2009, S. Masuzaki 1/18 Edge Heat Transport in the Helical Divertor Configuration in LHD S. Masuzaki, M. Kobayashi, T. Murase, T. Morisaki, N. Ohyabu,
1 Max-Planck-Institut für Plasmaphysik 10th ITPA meeting on SOL/Divertor Physics, 8/1/08, Avila ELM resolved measurements of W sputtering MPI für Plasmaphysik.
DIII-D SHOT #87009 Observes a Plasma Disruption During Neutral Beam Heating At High Plasma Beta Callen et.al, Phys. Plasmas 6, 2963 (1999) Rapid loss of.
Programmatic issues to be studied in advance for the DEMO planning Date: February 2013 Place:Uji-campus, Kyoto Univ. Shinzaburo MATSUDA Kyoto Univ.
D. Tskhakaya et al. 1 (13) PSI 18, Toledo July 2008 Kinetic simulations of the parallel transport in the JET Scrape-off Layer D. Tskhakaya, R.
1) Disruption heat loading 2) Progress on time-dependent modeling C. Kessel, PPPL ARIES Project Meeting, Bethesda, MD, 4/4/2011.
Edge-SOL Plasma Transport Simulation for the KSTAR
R. A. Pitts et al. 1 (12) IAEA, Chengdu Oct ELM transport in the JET scrape-off layer R. A. Pitts, P. Andrew, G. Arnoux, T.Eich, W. Fundamenski,
EFDA EUROPEAN FUSION DEVELOPMENT AGREEMENT Task Force S1 J.Ongena 19th IAEA Fusion Energy Conference, Lyon Towards the realization on JET of an.
ITER STEADY-STATE OPERATIONAL SCENARIOS A.R. Polevoi for ITER IT and HT contributors ITER-SS 1.
B WEYSSOW 2009 Coordinated research activities under European Fusion Development Agreement (addressing fuelling) Boris Weyssow EFDA-CSU Garching ITPA 2009.
PERSISTENT SURVEILLANCE FOR PIPELINE PROTECTION AND THREAT INTERDICTION International Plan for ELM Control Studies Presented by M.R. Wade (for A. Leonard)
1 EAST Recent Progress on Long Pulse Divertor Operation in EAST H.Y. Guo, J. Li, G.-N. Luo Z.W. Wu, X. Gao, S. Zhu and the EAST Team 19 th PSI Conference.
Integrated Simulation of ELM Energy Loss Determined by Pedestal MHD and SOL Transport N. Hayashi, T. Takizuka, T. Ozeki, N. Aiba, N. Oyama JAEA Naka TH/4-2.
1 SIMULATION OF ANOMALOUS PINCH EFFECT ON IMPURITY ACCUMULATION IN ITER.
Role of thermal instabilities and anomalous transport in the density limit M.Z.Tokar, F.A.Kelly, Y.Liang, X.Loozen Institut für Plasmaphysik, Forschungszentrum.
ZHENG Guo-yao, FENG Kai-ming, SHENG Guang-zhao 1) Southwestern Institute of Physics, Chengdu Simulation of plasma parameters for HCSB-DEMO by 1.5D plasma.
Fast response of the divertor plasma and PWI at ELMs in JT-60U 1. Temporal evolutions of electron temperature, density and carbon flux at ELMs (outer divertor)
Page 1 Alberto Loarte- NSTX Research Forum st - 3 rd December 2009  ELM control by RMP is foreseen in ITER to suppress or reduce size of ELM energy.
Radiation divertor experiments in the HL-2A tokamak L.W. Yan, W.Y. Hong, M.X. Wang, J. Cheng, J. Qian, Y.D. Pan, Y. Zhou, W. Li, K.J. Zhao, Z. Cao, Q.W.
Alberto Loarte 7 th ITPA Divertor Meeting – Toronto 6/9 – 11 – ITER Issue Card FW-3. Modification of Upper Be-blanket modules, material and/or PFC.
1 V.A. Soukhanovskii/IAEA-FEC/Oct Developing Physics Basis for the Radiative Snowflake Divertor at DIII-D by V.A. Soukhanovskii 1, with S.L. Allen.
NSTX APS-DPP: SD/SMKNov Abstract The transport properties of NSTX plasmas obtained during the 2008 experimental campaign have been studied and.
Numerical investigation of H-mode threshold power by using LH transition models 8th Meeting of the ITPA Confinement Database & Modeling Topical Group.
Features of Divertor Plasmas in W7-AS
L-H power threshold and ELM control techniques: experiments on MAST and JET Carlos Hidalgo EURATOM-CIEMAT Acknowledgments to: A. Kirk (MAST) European.
Valeryi Sizyuk Ahmed Hassanein School of Nuclear Engineering
Mikhail Z. Tokar and Mikhail Koltunov
Modelling of pulsed and steady-state DEMO scenarios G. Giruzzi et al
Presentation transcript:

EU PWI TF- 7th General meeting –Frascati /10/2008 PWI aspects of the FAST (Fusion Advanced Studies Torus) project Presented by G. Maddaluno Outline Main objectives and parameters of the FAST project Modelling of the FAST core/SOL plasma and evaluation of the divertor heat loads. Assessment of the divertor heat loads by ELMs Conclusions Univ. of Rome Tor Vergata Univ. of Catania

EU PWI TF- 7th General meeting –Frascati /10/2008 FAST objectives FAST (Fusion Advanced Studies Torus) is the proposal of the Italian Association on Fusion for a satellite facility in the frame of the EU Accompanying Programme. It is conceived to meet EFDA programmatic missions 1 to 5 (Burning Plasmas, Reliable Tokamak Operation, First Wall Materials & compatibility with ITER/DEMO relevant Plasmas, Technology and Physics of Long Pulse & Steady State, Predicting Fusion Performance) in support of ITER towards DEMO by integrating a set of conditions that must be as close as possible to those expected on ITER, in terms of physics parameters as well as of technical terms. FAST parameters have been chosen to satisfy the following conditions: ITER relevant geometry; production and confinement of energetic ions in the half-MeV range in order to obtain the presence of dominant electron heating; large ratio between the heating power and the device dimensions to investigate the physics of large heat loads; pulse duration (normalized to the plasma current diffusion time) similar to that of ITER to study AT plasma scenarios.

EU PWI TF- 7th General meeting –Frascati /10/2008 FAST parameters Plasma Current (MA)6.5 B T (T)7.5 Major Radius (m)1.82 Minor Radius (m)0.64 Elongation k Triangularity δ Safety Factor q 95 3 (m -3 ) 2x10 20 Flat-top (s)13 H&CD power (MW)30 ICRH (60-80 MHz) 30 ECRH (170 GHz)4 LH (3.6 or 5 GHz)6 Port compatible with (45° inclined) NNBI 10 P/R (MW/m)22 Reference scenario (scaled)

EU PWI TF- 7th General meeting –Frascati /10/2008 FAST plasma wall interaction issues ITER relevant values of P/R (up to 22 MW/m, P = 40 MW, R = 1.82) All tungsten machine (Li divertor also considered) Impurity seeding (Ar, Ne) to mitigate divertor heat loads All actively cooled PFCs Design maximum heat load assumed = 18 MWm -2 Outer midplane power flux e-folding length p omp assumed = m Closed divertor geometry (flux expansion factor at the target = 5)

EU PWI TF- 7th General meeting –Frascati /10/2008 Evaluation of the outer midplane power flux e-folding length From regression analysis on experimental power deposition profiles measured in JET H-mode discharges: λ TC q H-mode A(Z) 1.1 B φ0.9 q P t0.5 n e,u 0.15 with A and Z the ion mass and charge, B φ the toroidal field, q 95 the safety factor, P t the outer target power and n e,u the upstream density on the separatrix λ p omp m From multi-machine scaling the application at the FAST H-mode scenario of a multi-machine scaling provides a value λ p omp m or m depending on the scaling being calculated with the measured power flux to the outer divertor or with the total input power. The average heat flux on the divertor has been calculated as q target [MW m -2 ] = f out P div cos p / (2 R out λ p target ), where f out is the fraction of P div flowing to the outer target (= 2/3), p is the tilt angle of the target in the poloidal cross section, assumed = 70° and R out = 1.6 m is the major radius of outer target

EU PWI TF- 7th General meeting –Frascati /10/2008 Modelling of the FAST core/SOL plasma To have reliable predictions of the thermal loads on the divertor plates and of the core plasma purity a number of numerical self- consistent simulations have been made for the H-mode and steady-state scenario by using the code COREDIV. The COREDIV code treats the coupled SOL-bulk system by imposing the continuity of energy and particle fluxes and of particle densities and temperatures at the separatrix. The code solves self-consistently radial 1D energy and particle transport of plasma and impurities in the core region and 2D multi-fluid transport in the SOL A simple slab geometry (poloidal and radial directions) with classical parallel transport and anomalous radial transport is used for the SOL and the impurity fluxes and radiation losses caused by intrinsic and seeded impurity ions are calculated fully self consistently.

PFC Material W W % ArLi + 0.7% Ne Scenario H-mode reference Full NICD H-mode reference H-mode extreme H-mode reference I p (MA) B T (T) (10 20 m -3 ) P ADD (MW) n sep ( m -3 ) Z eff f RAD (%) T eplate (eV) P DIV (MW) q t (MWm -2 )

EU PWI TF- 7th General meeting –Frascati /10/2008 Main results of COREDIV modelling In the H-mode reference scenario (I p = 6.5 MA, B T =7.5 T, = m 3, P ADD = 30 MW) impurity seeding could reveal not essential, with a beneficial effect on the core Z eff ( 1), the outer divertor heat load exceeding only marginally the design value of 18 MW m -2. In the full NICD scenario (I p = 2.0 MA, B T = 3.5 T, = m -3, P ADD = 40 MW), without impurity seeding, a slight increase (to m -3 ) of the foreseen density is needed for reducing core Z eff to acceptable values (that is not possible with impurity seeding). In the extreme H-mode scenario (I p = 8.0 MA, B T = 8.5 T, = , P ADD = 40 MW), the impurity seeding is needed for decreasing the power flowing to the divertor, the core Z eff value staying always below 1.2.

EU PWI TF- 7th General meeting –Frascati /10/2008 Tungsten sputtering yields

EU PWI TF- 7th General meeting –Frascati /10/2008 Preliminary ELMs heat load assessment Assumptions: 1.ELM energy W ELM ~ 0.15 W PED [1] ~ W TOT ; 2.for H-mode reference scenario, with n e /n eGW 0.3, W ELM 1.5 MJ; 3.all the ELM energy W ELM reaches the divertor; 4.the fraction of the ELM energy mostly contributing to material damage, i.e. the one deposited in short timescales, is about 40% for low collisionality [2]; 5.similar spatial deposition profile as inter-ELM and a factor 2 asymmetry in the in- out ELMs energy deposition 6.the heat deposition time depends on the parallel ion loss time, scaling according R/ T ped the energy density on the inner divertor is expected to be about 1.0 MJ m -2, to be compared with the threshold for damage (0.3 MJ m -2 ), scaled from the one adopted by ITER for avoiding too strong W erosion. [1] Loarte A. et al 2003 Plasma Phys. Control. Fusion [2] Eich et al 2005 J. Nucl. Mater. 337–

EU PWI TF- 7th General meeting –Frascati /10/2008 W ELM /W ped vs. ped *

EU PWI TF- 7th General meeting –Frascati /10/2008 At low * the fraction of W ELM contributing to target damage is 40%

EU PWI TF- 7th General meeting –Frascati /10/2008 Conclusions ITER & DEMO relevant plasma wall interactions regimes are achievable in FAST (P/R; ELMs); COREDIV simulations show that in all the foreseen scenarios steady state divertor heat loads can be kept under the design value while preserving plasma purity, allowing for impurity seeding when a larger fraction of radiated power is necessary. The preliminary assessment of ELMs power flux results in a divertor heat flux 3-4 times larger than the safe limit, a factor that can be recovered by the present mitigation tools. The involvement of the largest possible number of Associations is mandatory to realize FAST. If the FAST project were to go on, the skill and the expertise existing inside the EU PWI TF can play a key role in withstanding and solving the related plasma wall interaction problems.