Max-Planck-Institut für Plasmaphysik EURATOM Assoziation Interaction of nitrogen plasmas with tungsten Klaus Schmid, A. Manhard, Ch. Linsmeier, A. Wiltner,

Slides:



Advertisements
Similar presentations
Chapter 2-3. States and carrier distributions
Advertisements

Report IPP Garching EU Task Force PWI Meeting, Cadarache Oct Max-Planck-Institut für Plasmaphysik compiled by Arne Kallenbach (IPP - EU-PWI.
Report on SEWG mixed materials EU PWI TF meeting Madrid 2007 V. Philipps on behalf of SEWG members Mixed material formation is a among the critical ITER.
R. Doerner, Oct. 18, 2005 EU PWI TF meeting, France Beryllium and carbon mixed-material studies R. P. Doerner, M. J. Baldwin, J. Hanna and D. Nishijima.
A new look at the specification of ITER plasma wall interaction and tritium retention J. Roth a, J. Davis c, R. Doerner d, A. Haasz c, A. Kallenbach a,
PWI Modelling Meeting – EFDA C. J. OrtizCulham, Sept. 7 th - 8 th, /8 Defect formation and evolution in W under irradiation Christophe J. Ortiz Laboratorio.
M. Mayer SEWG Fuel Retention June Sample Analysis for TS, AUG and JET: Depth Profiling of Deuterium M. Mayer Max-Planck-Institut für Plasmaphysik,
WP10-PWI (02)/TEKES/BS(PS) Characterization of retention mechanisms in AUG Monitoring meeting of the EFDA PWI SEWG on Gas Balance and Fuel Retention,
M. Reinelt, K. Schmid, K. Krieger SEWG High-Z Ljubljana Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.
Kazuyoshi Sugiyama, SEWG meeting, Culham, July Outline: 1.Introduction 2.Experimental procedure 3.Result 4.Summary Kazuyoshi Sugiyama First.
K. Krieger, SEWG Meeting on Material Migration and ITER Material Mix, JET, Max-Planck-Institut für Plasmaphysik Carbon local transport and redeposition.
Max-Planck-Institut für Plasmaphysik EURATOM Assoziation K. Schmid SWEG Deuterium retention in graphite samples exposed to beryllium-seeded.
SEWG Fuel Retention July 2008 © Matej Mayer Fuel retention in ASDEX Upgrade tungsten coatings M. Mayer, M. Balden, K. Krieger, S. Lindig, O. Ogorodnikova,
CIPS SEWG FR, JET 2008C. Hopf O 2 /He glow discharge cleaning: Experience at IPP Christian Hopf, Volker Rohde, Wolfgang Jacob Max-Planck-Institut für Plasmaphysik.
Kazuyoshi Sugiyama, SEWG meeting on Fuel retention, Garching, July Contribution of Boron on the D retention in the AUG full-W wall regime Max-Planck-Institut.
SEWG Gas Balance 2007 © Matej Mayer First results on deuterium depth profiling in W tiles M. Mayer 1, V.Kh. Alimov, V. Rohde 1, J. Roth 1, A. Herrmann.
D retention and release behaviour of Be/C/W mixed materials
FOM-Institute for Plasma Physics Rijnhuizen Association Euratom-FOM T E CT E C T E CT E C Carbon Chemical Erosion Yield Experiments in Pilot-PSI Jeroen.
Max-Planck-Institut für Plasmaphysik EURATOM Assoziation K. Schmid SEWG meeting on mixed materials Parameter studies for the Be-W interaction Klaus Schmid.
PWI questions of ITER review working groups WG1 and WG8 : Materials Introduction EU PWI TF V. Philipps, EU PWI TF meeting, Oct 2007, Madrid V. Philipps,
Member of the Helmholtz Association Carbon based materials: fuel retention and erosion under ITER-like mixed species plasma conditions Arkadi Kreter et.
Thomas Härtl, IPP, Measurement of Gas Retention in AUG, WP10-PWI /II/BS, 19. July Measurement of Gas Retention in ASDEX Upgrade - A Technical.
R. Doerner, EU SEWG meeting, JET. July 9-10, 2007 Co-deposition/Co-implantation R. Doerner, M. Baldwin, G. De Temmerman, D. Nishijima UCSD K. Schmid, Ch.
Institute for Plasma Physics Rijnhuizen D retention in W and mixed systems in Pilot-PSI G. De Temmerman a, K. Bystrov a, L. Marot b, M. Mayer c, J.J. Zielinski.
D retention in O-covered and pure beryllium
1 Vacuum Pumping Via Titanium- Zirconium-Vanadium Thin Films Yulin Li Laboratory for Elementary-Particles Physics, Cornell University, Ithaca, NY 14853,
Equipe Couches Nanométriques : Formation, Interfaces, Défauts
18 th International Conference on Plasma Surface Interaction in Controlled Fusion Toledo, Spain, May 26 – 30, Deuterium trapping in tungsten damaged.
Complex chemical interactions of lithium, deuterium, and oxygen on lithium-coated graphite PFC surfaces C.N. Taylor1, B. Heim1, J.P. Allain1, C. H. Skinner2,
Wir schaffen Wissen – heute für morgen 5. Mai 2015PSI,5. Mai 2015PSI, Paul Scherrer Institut Polonium Evaporation Studies from Liquid Metal Spallation.
1 EFFECTS OF CARBON REDEPOSITION ON TUNGSTEN UNDER HIGH-FLUX, LOW ENERGY Ar ION IRRADITAION AT ELEVATED TEMPERATURE Lithuanian Energy Institute, Lithuania.
L.B. Begrambekov Plasma Physics Department, Moscow Engineering and Physics Institute, Moscow, Russia Peculiarities, Sources and Driving Forces of.
Dynamic hydrogen isotope behavior and its helium irradiation effect in SiC Yasuhisa Oya and Satoru Tanaka The University of Tokyo.
Runaway Electron Mitigation Collaboration on J-TEXT David Q. Hwang UC Davis Sixth US-PRC Magnetic Fusion Collaboration Workshop Collaborating Institutions:
Study of sputtering on thin films due to ionic implantations F. C. Ceoni, M. A. Rizzutto, M. H. Tabacniks, N. Added, M. A. P. Carmignotto, C.C.P. Nunes,
Y. Ueda, M. Fukumoto, H. Kashiwagi, Y. Ohtsuka (Osaka University)
Laser etching of GaN Jonathan Winterstein Dr. Tim Sands, Advisor.
Deuterium retention mechanisms in beryllium M. Reinelt, Ch. Linsmeier Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.
Dynamic evolution of mixed materials bombarded with multiple ions beams and impurities Tatyana Sizyuk Ahmed Hassanein School of Nuclear Engineering Center.

ECE/ChE 4752: Microelectronics Processing Laboratory
R. Doerner, May 9, 2005 PFC Program Review, PPPL PISCES ITER-simulation experiments on Mixed-Materials (Be, C, W) R. P. Doerner, M. J. Baldwin and D. Nishijima.
Salamanca.ppt, © Thomas Schwarz-Selinger, 03. Juni 2008 G. S. Oehrlein*, T. Schwarz-Selinger, K. Schmid, M. Schlüter and W. Jacob Interaction of Deuterium.
Measurement and modeling of hydrogenic retention in molybdenum with the DIONISOS experiment G.M. Wright University of Wisconsin-Madison, FOM – Institute.
ASIPP Development of a new liquid lithium limiter with a re-filling system in HT-7 G. Z. Zuo, J. S. Hu, Z.S, J. G. Li,HT-7 team July 19-20, 2011 Institute.
K. Sugiyama, 9th International Workshop on Hydrogen Isotopes in Fusion Reactor Materials, Salamanca, June 2-3, Max-Planck-Institut für Plasmaphysik.
Negative Ions in IEC Devices David R. Boris 2009 US-Japan IEC Workshop 12 th October, 2009 This work performed at The University of Wisconsin Fusion Technology.
Updates of Iowa State University S. Dumpala, S. Broderick and K. Rajan Oct-2, 2013.
/15RRP HAPL Dec 6, Robert R. Peterson Los Alamos National Laboratory and University of Wisconsin Calculations of the Response of Inertial Fusion.
1 Max-Planck-Institut für Plasmaphysik 10th ITPA meeting on SOL/Divertor Physics, 8/1/08, Avila ELM resolved measurements of W sputtering MPI für Plasmaphysik.
1 A. Kitamura, H. Iwai, R. Nishio, R. Satoh, A. Taniike and Y. Furuyama Department of Environmental Energy Science, Graduate School of Science and Technology,
Compositional dependence of damage buildup in Ar-ion bombarded AlGaN K. Pągowska 1, R. Ratajczak 1, A. Stonert 1, L. Nowicki 1 and A. Turos 1,2 1 Soltan.
Edge-SOL Plasma Transport Simulation for the KSTAR
1 US PFC Meeting, UCLA, August 3-6, 2010 DIONISOS: Upgrading to the high temperature regime G.M. Wright, K. Woller, R. Sullivan, H. Barnard, P. Stahle,
The effect of displacement damage on deuterium retention in plasma-exposed tungsten W.R.Wampler, Sandia National Laboratories, Albuquerque, NM R. Doerner.
1 Deuterium retention and release in tungsten co- deposited layers G. De Temmerman a,b, and R.P. Doerner a a Center for Energy Research, University of.
Secondary Ion Mass Spectrometry A look at SIMS and Surface Analysis.
MOLIBDENUM MIRRORS WITH COLUMN NANOGRAIN REFLECTING COATING AND EFFECT OF ION- STIMULATED DIFFUSION BLISTERRING RRC «Кurchatov Institute» А.V. Rogov, К.Yu.Vukolov.
10th ITPA conference, Avila, 7-10 Jan Changes of Deuterium Retention Properties on Metals due to the Helium Irradiation or Impurity Deposition M.Tokitani.
Effect of Re Alloying in W on Surface Morphology Changes After He + Bombardment at High Temperatures R.F. Radel, G.L. Kulcinski, J. F. Santarius, G. A.
Karolina Danuta Pągowska
Section 5: Thin Film Deposition part 1 : sputtering and evaporation
Influence of pulse parameters and cathodic cage size on plasma nitriding DEPARTMENT OF PHYSICS QUAID-I-AZAM UNIVERSITY ISLAMABAD, PAKISTAN Prof.
Tatyana Sizyuk Ahmed Hassanein School of Nuclear Engineering
Molecular Dynamics Simulations of Ion Irradiation of a Surface under an Electric Field S. Parviainen, F. Djurabekova.
1.6 Magnetron Sputtering Perpendicular Electric Magnetic Fields.
ITERに係わる原子分子過程 Atomic and Molecular Processes in ITER SHIMADA, Michiya ITER International Team Annual Meeting of Japan Society of Plasma Science and Nuclear.
IC AND NEMS/MEMS PROCESSES
Deuterium retention for sample temperature of 500 K
Presentation transcript:

Max-Planck-Institut für Plasmaphysik EURATOM Assoziation Interaction of nitrogen plasmas with tungsten Klaus Schmid, A. Manhard, Ch. Linsmeier, A. Wiltner, T. Schwarz-Selinger, W. Jacob, Stephan Mändl

K. Schmid 2009 Introduction Summary Outline Experiment & Results N accumulation & sputtering of W Nitride phase formation

K. Schmid 2009 Introduction ASDEX Upgrade (now full W) experiments show performance increase for N 2 seeding in the divertor compared to Ne or Ar [1]: Why N and W ? [1] A. Kallenbach, et. Al. Nuclear Fusion 49 (2009) Question: Influence of nitrogen ions on tungsten PFCs ? Sputtering of tungsten by nitrogen Nitrogen accumulation in tungsten Thermodynamics and thermal stability of the tungsten-nitrogen system Perform experiments on: + Improved energy confinement + Smaller ELMs N 2 gas puffing is used for edge plasma cooling in high-Z PFC fusion experiments

K. Schmid 2009 Experiment & Results N-accumulation and Sputtering of W by N grid Sample holder U DC, bias ECR plasma ion source with freely expanding plasma beam Homogenous irradiation of samples Ion energy by DC biasing up to 500V Water cooled sample holder Ion flux & energy distribution measured by retarding field analyzer: 3 to 4x10 18 N y + (m -2 s) Molecular ion distribution measured by plasma monitor Dominantly N 2 + ions PLAQ Samples W Cu Si PVD tungsten layer ~ 500 nm PVD copper interlayer ~100 nm stress relief Silicon substrate well-defined surface for RBS analysis Implantation setup

K. Schmid 2009 Experiment & Results N-accumulation and Sputtering of W by N N 2 plasma flux and composition Retarding field analyzer measurements Flux :3 - 4 x N 2 + / cm 2 s in main peak Most ions have energy corresponding to bias Plasma monitor measurements Plasma dominated by N 2 + ions N 3 + ions occur at highest pressures ~1Pa N + ions maintain constant level with pressure Implantations were performed at 0.25 Pa 90% N 2 +

K. Schmid 2009 Experiment & Results N-accumulation and Sputtering of W by N Measuring N accumulation in W by nuclear reaction NRA with 3.8 MeV 3He Reaction used: 14N ( 3He, p ) 16O Sensitivity: N/cm cts/ C Peak integral of p1 + p2 protons is evaluated to obtain the N areal density Measuring W sputtering via thickness change of W layer Rutherford backscattering (2.3 MeV 4He) Yields tungsten layer thickness Sensitivity: W atoms / cm 2

K. Schmid 2009 Experiment & Results N-accumulation and Sputtering of W by N Implantation in plasma ion source PlaQ Low energy ions Sample temperature room temperature Quick saturation of retained N amount TRIDYN calculations predict similar levels Diffusion of N in W low (similar to C in W) N accumulation controlled by the implantation range For our low implantation energies one expects accumulation in the range of:

K. Schmid 2009 Experiment & Results N-accumulation and Sputtering of W by N Sputter yield of W by N from an N 2 plasma Sputter yield is much lower that expected from static TRIM Accumulation of N in W surface reduces partial sputter yield Good agreement between dynamic TRIM and experiment (dyn. Surface evolution) For Ne no accumulation in W surface Ne Sputter yield matches static TRIM N accumulation in W surface shields W from erosion by N Could partly be the reason for the good AUG performance with N-puffing

K. Schmid 2009 Experiment & Results Nitride phase formation Bombardment of W by 3keV N ion beam XPS analysis to identify nitride formation Literature data on W4f shift due to nitride formation varies strongly We find a shift of 0.45eV for nitride peaks. (lies within the literature data range) The intensity of nitride phase decreases with temperature

K. Schmid 2009 Experiment & Results Nitride phase formation W-N Phase diagram calculated by ThermoCalc TM Based on very little available data N 2 gas phase suppressed At ambient pressures WN instable above ~600K XPS measurements confirm thermodynamic modeling WN decomposes at high temperatures and N is lost as degassing N 2.

K. Schmid 2009 Plasma immersion ion implantation at IOM Leipzig 10 kV pulses Sample heated by pulses Implantation fluence comparable to plasma implantation Retained amount of N decreases with temperature above 650K Experiment & Results Nitride phase formation Decay above ~650K Nicely fits predictions by thermodynamic modeling As expected: Total accumulated amount higher than in our plasma implantation due to higher energies

K. Schmid 2009 Summary N accumulation quickly saturates once implantation range is filled with nitride phase Total amount of N is determined by N energy via the implantation range N accumulation in the surface leads to a reduction in the partial W sputter yield Advantage over noble gas seeding species XPS measurements of nitride fraction & measurements of total N amount indicate that the nitride decomposes at elevated temperatures This is line with thermodynamic calculations by ThermoCalc TM