Max-Planck-Institut für Plasmaphysik EURATOM Assoziation K. Schmid SEWG meeting on mixed materials Parameter studies for the Be-W interaction Klaus Schmid.

Slides:



Advertisements
Similar presentations
Report IPP Garching EU Task Force PWI Meeting, Cadarache Oct Max-Planck-Institut für Plasmaphysik compiled by Arne Kallenbach (IPP - EU-PWI.
Advertisements

Report on SEWG mixed materials EU PWI TF meeting Madrid 2007 V. Philipps on behalf of SEWG members Mixed material formation is a among the critical ITER.
R. Doerner, Oct. 18, 2005 EU PWI TF meeting, France Beryllium and carbon mixed-material studies R. P. Doerner, M. J. Baldwin, J. Hanna and D. Nishijima.
A new look at the specification of ITER plasma wall interaction and tritium retention J. Roth a, J. Davis c, R. Doerner d, A. Haasz c, A. Kallenbach a,
Max-Planck-Institut für Plasmaphysik EURATOM Assoziation Interaction of nitrogen plasmas with tungsten Klaus Schmid, A. Manhard, Ch. Linsmeier, A. Wiltner,
M. Mayer SEWG Fuel Retention June Sample Analysis for TS, AUG and JET: Depth Profiling of Deuterium M. Mayer Max-Planck-Institut für Plasmaphysik,
Molecular Dynamics modelling of mixed layer formation K. Nordlund, C. Björkas, N. Juslin, K. Vörtler Accelerator Laboratory, University of Helsinki P.
WP10-PWI (02)/TEKES/BS(PS) Characterization of retention mechanisms in AUG Monitoring meeting of the EFDA PWI SEWG on Gas Balance and Fuel Retention,
M. Reinelt, K. Schmid, K. Krieger SEWG High-Z Ljubljana Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.
SEWG Meeting HIGH-Z, Ljubljana, October 2009 I. Tungsten distribution on limiters after WF 6 injection in TEXTOR II. SEM and EDX of Melted Tungsten Rods.
Kazuyoshi Sugiyama, SEWG meeting, Culham, July Outline: 1.Introduction 2.Experimental procedure 3.Result 4.Summary Kazuyoshi Sugiyama First.
ERO modelling of local 13 C deposition at the outer divertor of JET M. Airila, L. Aho-Mantila, S. Brezinsek, P. Coad, A. Kirschner, J. Likonen, D. Matveev,
K. Krieger, SEWG Meeting on Material Migration and ITER Material Mix, JET, Max-Planck-Institut für Plasmaphysik Carbon local transport and redeposition.
Max-Planck-Institut für Plasmaphysik EURATOM Assoziation K. Schmid SWEG Deuterium retention in graphite samples exposed to beryllium-seeded.
Vienna University of Technology (TU Wien) slides provided by F. Aumayr EURATOM – ÖAW: Contribution of the Austrian Fusion Association 2006 Innsbruck University.
SEWG Fuel Retention July 2008 © Matej Mayer Fuel retention in ASDEX Upgrade tungsten coatings M. Mayer, M. Balden, K. Krieger, S. Lindig, O. Ogorodnikova,
CIPS SEWG FR, JET 2008C. Hopf O 2 /He glow discharge cleaning: Experience at IPP Christian Hopf, Volker Rohde, Wolfgang Jacob Max-Planck-Institut für Plasmaphysik.
Kazuyoshi Sugiyama, SEWG meeting on Fuel retention, Garching, July Contribution of Boron on the D retention in the AUG full-W wall regime Max-Planck-Institut.
SEWG Gas Balance 2007 © Matej Mayer First results on deuterium depth profiling in W tiles M. Mayer 1, V.Kh. Alimov, V. Rohde 1, J. Roth 1, A. Herrmann.
Institut für Energieforschung - Plasmaphysik EURATOM Assoziation – FZJ TEC A. Litnovsky et al., Meeting of the EU TF PWI SEWG on mixed materials, JET,
C. Björkas, K. Vörtler and K. Nordlund Department of Physics, University of Helsinki Joint TFE-SEWG - Material Migration and Material Mixing meeting MD.
1. Qualifying carbon as PFC Erosion (see report S. Brezinsek ) along plasma wetted areas, effect of substrate Local C migration to gaps Fuel retention.
V.Philipps, SEWG Gas balance and fuel removal, JET, , Association EURATOM – FZJ Effect of disruptions on fuel release from JET walls V. Philipps,
D retention and release behaviour of Be/C/W mixed materials
PWI questions of ITER review working groups WG1 and WG8 : Materials Introduction EU PWI TF V. Philipps, EU PWI TF meeting, Oct 2007, Madrid V. Philipps,
R. Doerner, EU SEWG meeting, JET. July 9-10, 2007 Recent Results from PISCES Program R. P. Doerner, M. J. Baldwin, G. De Temmerman, J. Hanna, D. Nishijima,
SEWG Meeting Mixed Materials 2007 First results from beryllium on carbon Florian Kost Christian Linsmeier.
R. Doerner, EU SEWG meeting, JET. July 9-10, 2007 Co-deposition/Co-implantation R. Doerner, M. Baldwin, G. De Temmerman, D. Nishijima UCSD K. Schmid, Ch.
Institute for Plasma Physics Rijnhuizen D retention in W and mixed systems in Pilot-PSI G. De Temmerman a, K. Bystrov a, L. Marot b, M. Mayer c, J.J. Zielinski.
Benchmarking DIVIMP-ERODEPDIF ITER predictions on material mixing using JET results M. Reinelt, K. Schmid, K. Krieger Max-Planck-Institut.
D retention in O-covered and pure beryllium
H and He cluster formation in W Krister Henriksson Accelerator laboratory.
7/12/04CIDER/ITP Short Course Composition and Structure of Earth’s Interior A Perspective from Mineral Physics.
Introduction to Plasma-Surface Interactions Lecture 6 Divertors.
1 EFFECTS OF CARBON REDEPOSITION ON TUNGSTEN UNDER HIGH-FLUX, LOW ENERGY Ar ION IRRADITAION AT ELEVATED TEMPERATURE Lithuanian Energy Institute, Lithuania.
PISCES R. Doerner, ITPA SOL/DIV meeting, Avila, Jan. 7-10, 2008 Mixed plasma species effects on Tungsten M.J. Baldwin, R.P. Doerner, D. Nishijima University.
Y. Ueda, M. Fukumoto, H. Kashiwagi, Y. Ohtsuka (Osaka University)
CHAPTER 6: DIFFUSION IN SOLIDS
Solidification and Grain Size Strengthening
Effects of active mode control on edge profiles and plasma-surface interactions in T2R H. Bergsåker with contributions from S. Menmuir, M. Henriksson et.
CHAPTER 5: DIFFUSION IN SOLIDS
1 R. Doerner, ARIES HHF Workshop, Dec.11, 2008 PMI issues beyond ITER Presented by R. Doerner University of California in San Diego Special thanks to J.
Deuterium retention mechanisms in beryllium M. Reinelt, Ch. Linsmeier Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.
Diffusion Mass Transfer
R. Doerner, May 9, 2005 PFC Program Review, PPPL PISCES ITER-simulation experiments on Mixed-Materials (Be, C, W) R. P. Doerner, M. J. Baldwin and D. Nishijima.
R. Doerner, IAEA CRP on H in Materials, Vienna, Sept. 26, 2006 Mixed-material studies in PISCES-B R. P. Doerner, M. J. Baldwin, J. Hanna and D. Nishijima.
Measurement and modeling of hydrogenic retention in molybdenum with the DIONISOS experiment G.M. Wright University of Wisconsin-Madison, FOM – Institute.
R. P. Doerner, 2 nd PMIF Meeting, Juelich, Sept , 2011 Plasma interactions with Be surfaces R. P. Doerner, D. Nishijima, T. Schwarz-Selinger and.
Introduction Material transport by atomic motion Diffusion couple:
R. Doerner, ITPA SOL/DIV meeting, Avila, Jan. 7-10, R. P. Doerner, G. De Temmerman, M.J. Baldwin, D. Nishijima Center for Energy Research, University.
Updates of Iowa State University S. Dumpala, S. Broderick and K. Rajan Oct-2, 2013.
Xin Xi Feb. 28. Basics  Convective entrainment : The buoyant thermals from the surface layer rise through the mixed layer, and penetrate (with enough.
1 Max-Planck-Institut für Plasmaphysik 10th ITPA meeting on SOL/Divertor Physics, 8/1/08, Avila ELM resolved measurements of W sputtering MPI für Plasmaphysik.
Edge-SOL Plasma Transport Simulation for the KSTAR
R. Doerner, ITPA SOL/DIV meeting, Avila, Jan. 7-10, Be deposition on ITER first mirrors: layer morphology and influence on mirror reflectivity G.
The effect of displacement damage on deuterium retention in plasma-exposed tungsten W.R.Wampler, Sandia National Laboratories, Albuquerque, NM R. Doerner.
1 Deuterium retention and release in tungsten co- deposited layers G. De Temmerman a,b, and R.P. Doerner a a Center for Energy Research, University of.
Evaluation of the Cu atomic density during sputter deposition process with optical emission spectroscopy Takeo Nakano, Kouji Tanaka and Shigeru Baba Dept.
MOLIBDENUM MIRRORS WITH COLUMN NANOGRAIN REFLECTING COATING AND EFFECT OF ION- STIMULATED DIFFUSION BLISTERRING RRC «Кurchatov Institute» А.V. Rogov, К.Yu.Vukolov.
10th ITPA conference, Avila, 7-10 Jan Changes of Deuterium Retention Properties on Metals due to the Helium Irradiation or Impurity Deposition M.Tokitani.
ISSUES TO ADDRESS... How does diffusion occur? Why is it an important part of processing? How can the rate of diffusion be predicted for some simple cases?
Overview of recent work on carbon erosion, migration and long-term fuel retention in the EU-fusion programme and conclusions for ITER V. Philipps a Institute.
Heat Transfer: Physical process by which thermal energy is exchanged between material bodies or inside the same body as a result of a temperature difference.
1. Which of the following is NOT a conversion factor for 1 mole of a substance? A. 1.0 g B. molar mass C X particles D L E. Avogadro’s.
Date of download: 5/31/2016 Copyright © ASME. All rights reserved. From: Influence of Interfacial Mixing on Thermal Boundary Conductance Across a Chromium/Silicon.
Mass Transfer transport of one constituent from a region of higher concentration to that of a lower concentration.
Finite difference code for 3D edge modelling
Studies of impurity migration in TEXTOR by local tracer injection
Aerosol Production in Lead-protected and Flibe-protected Chambers
Multiscale modeling of hydrogen isotope transport in porous graphite
Presentation transcript:

Max-Planck-Institut für Plasmaphysik EURATOM Assoziation K. Schmid SEWG meeting on mixed materials Parameter studies for the Be-W interaction Klaus Schmid

K. Schmid, SEWG meeting on mixed materials Introduction Outline Summary Modelling Be layer deposition on W Pure kinematics: TRIDYN Including diffusion and sublimation: ERODEPDIF Simple flux balance model

K. Schmid, SEWG meeting on mixed materials Introduction Deposition of mixed Be/W layers in ITER has been hyped during the past two years ITER Be erosion in main chamber Be transported to Divertor Potential Be layer deposition on C and W ITER main plasma facing wall: Be, W, C Depends on ratio of influx to Be loss mechanisms Interdiffusion can lead to formation of Be/W alloys

K. Schmid, SEWG meeting on mixed materials Introduction Higher W evaporation rate than pure W Potential for large W influx into plasma due to melt layer ejection or evaporation Lower melt temperature than pure W Ch. Linsmeier What are the issues with Be rich Be/W mixed layers ?

K. Schmid, SEWG meeting on mixed materials Introduction Available experimental data PISCES-B plasma exposures Polished W samples are exposed to a Be seeded D plasma Vary temperature, Be flux fraction and ion energy Non floating ion energies No Be layer growth For temperatures > 1300K No Be layer growth No be rich alloys ITER W baffles will operate in an ion energy and surface temp. range that will hinder Be layer formation

K. Schmid, SEWG meeting on mixed materials Introduction Available experimental data Surface temperature f Be a f Be b f Be a < f Be b Be layer deposition region Be deposition is limited by either sputtering, sublimation or both ? What is the parameter range (T e, T Surf, f Be ) where Be layer deposition and alloy formation are possible Sublimation limit Sputter limit

K. Schmid, SEWG meeting on mixed materials Modelling Be layer deposition on W Pure kinematics: TRIDYN Expected Be depth profile in PISCES-B experiments: Floating energies No Be erosion Thick Be layer deposit Agrees with PISCES-B results Accumulated fraction of Be: PISCES-B 5x10 -3 TRIDYN 4x10 -3

K. Schmid, SEWG meeting on mixed materials Modelling Be layer deposition on W Pure kinematics: TRIDYN Expected Be depth profile in PISCES-B experiments: Non floating energies Erosion zone Deposition zone High re-erosion rate depletes surface from Be Be implanted beyond erosion zone accumulates TRIDYN partly explains low temp. non floating PISCES results

K. Schmid, SEWG meeting on mixed materials ERODEPDIF Simulates Be deposition and re-erosion including: Diffusion Sputtering Sublimation Reflection All these processes are considered to be dependent on the surface composition Very important for Be on W TRIDYN wont work for Be plasma fractions < due to statistics TRIDYN cant handle diffusion or sublimation Modelling Be layer deposition on W Including diffusion and sublimation: ERODEPDIF Ficks second law Predetermined reflection yield Arrhenius temperature dependence Predetermined sputter yield

K. Schmid, SEWG meeting on mixed materials Modelling Be layer deposition on W Including diffusion and sublimation: ERODEPDIF Erosion zone Depos. zone Diffusion zone Thickness of Erosion and deposition zone are kept constant by moving material to and from the bulk Simulates layer growth The resulting depth profile diffuses according to Ficks second law with a concentration dependent diffusion coefficient Erosion (sublimation and sputtering) occurs only in the erosion zone, deposition occurs in both the erosion and the deposition zone ERODEPDIF Surface model

K. Schmid, SEWG meeting on mixed materials Modelling Be layer deposition on W Including diffusion and sublimation: ERODEPDIF Sputter and reflection yield as function of surface concentration In a Be/W mixture Be is sputtered by D reflected in the bulk ERODEPDIF uses linear functions to approximate Y(C) and R(C) In a Be/W mixture the Be reflection & sputter yields depend on surface composition Reflection yield only shows little energy but strong composition dependence Total sputter yield scales linearly with composition Linear function parameters can be deduced from Bohdansky sputter formula

K. Schmid, SEWG meeting on mixed materials Concentration and temperature dependent inter-diffusion coefficient for Be and W Concentration dependence Temperature dependence Modelling Be layer deposition on W Including diffusion and sublimation: ERODEPDIF D(T) from reaction zone thicknes D(C) from modelling of depth profiles

K. Schmid, SEWG meeting on mixed materials Modelling Be layer deposition on W Including diffusion and sublimation: ERODEPDIF The sublimation rates and energies for pure Be or W are well known But what about mixed Be/W surface ? Given the heat of formation U MIX for a given mixture the surface binding energy that has to be overcome during sublimation or sputtering can be calculated: Solving for V AB yields: The surface binding energy (SBE) then reads for the binary Be/W system: Be SBE is increased W SBE is decreased Be SBE is increased W SBE is decreased Increased W sublimation Decreased Be sublimation Increased W sublimation Decreased Be sublimation

K. Schmid, SEWG meeting on mixed materials Modelling Be layer deposition on W Including diffusion and sublimation: ERODEPDIF Comparison of TRIDYN and ERODEPDIF for PISCES-B conditions at low temperatures (No diffusion or Sublimation) ERODEPDIF closely matches TRIDYN results at low temperatures 75eV Ion energy 0.15% Be plasma fraction Simulate high temperature cases including sublimation & diffusion

K. Schmid, SEWG meeting on mixed materials Modelling Be layer deposition on W Including diffusion and sublimation: ERODEPDIF Model high temperature PISCES-B exposures with ERODEPDIF: Low energies Due to lack of sputtering surface concentration ~1 Be 12 W alloy comp. At 1073K a thick pure Be layer forms + 200A Be 12 W At 1320K strong diffusion & sublimation hinder alloy formation Result agrees with PISCES-B data

K. Schmid, SEWG meeting on mixed materials Modelling Be layer deposition on W Including diffusion and sublimation: ERODEPDIF Model high temperature PISCES-B exposures with ERODEPDIF: High energies At 300K a thick Be layer forms but no Be/W alloying At 1073K a thick Be 12 W layer forms At 1320K a sublimation hinders Be layer formation Due to high sputter and/or sublimation losses the Be surface concentration is ~0 in all cases Simple flux balance models are have difficulties predicting layer formation Be 12 W alloy comp. Sublimation and sputtering are diffusion limited Results depend on diffusion coefficient Sublimation and sputtering are diffusion limited Results depend on diffusion coefficient

K. Schmid, SEWG meeting on mixed materials Modelling Be layer deposition on W Simple flux balance model Assumptions: Implantation & Erosion (Sputtering, Sublimation) occur homogeneously in the same depth interval Particle energies and temperatures are low enough such that no W erosion occurs Be surface concentration is given by Be erosion/deposition flux balance alone

K. Schmid, SEWG meeting on mixed materials Modelling Be layer deposition on W Simple flux balance model Surface and plasma temperature range where Be layer growth occurs ITER divertor conditions T e ~ 20 – 40eV T Surf < 1000K More than 5% Be plasma concentration needed for layer growth PISCES-B Parameter range

K. Schmid, SEWG meeting on mixed materials Summary/Outlook Experiments at PISCES-B indicate the Be layers only form at low (~10eV) particle energies and temperatures (~1000K) Modelling calculation can explain the PISCES-B results (quantitative comparison difficult due to lack of Be depth profiles) Calculations suffer from lack of thermodynamic data for the Be/W system Be / W interdiffusion Be sublimation from Be / W alloys Depth profiling of Be in PISCES-B exposed samples + Comparison with calculated depth profiles